
MOBILE APPLICATIONS: A BACKDOOR INTO INTERNET OF THINGS? APVRILLE

1VIRUS BULLETIN CONFERENCE OCTOBER 2016

MOBILE APPLICATIONS: A
BACKDOOR INTO INTERNET OF

THINGS?
Axelle Apvrille

Fortinet, France

Email aapvrille@fortinet.com

ABSTRACT

While the Internet of Things blossoms with newly connected
objects every day, the security and privacy of these objects is
often of a lesser priority due to market pressure. To assess their
effective security status – and improve it – researchers need to
reverse engineer them. Unfortunately, this is not an easy task
thanks to the wide variety of smart objects: they often use
custom hardware, fi rmware, operating systems and protocols,
meaning that each reverse engineering can be like starting from
scratch in a brand new domain – a time-consuming process.

In this paper, we address this issue and propose an easier way to
start reverse engineering smart objects. The idea consists of
focusing not on the object itself, but on the mobile applications
that come with it in numerous cases. We show that this
methodology gives good results and illustrate it using three smart
objects: a connected toothbrush, a smart watch and a home
safety alarm.

1. INTRODUCTION

The Internet of Things (IoT), defi ned in the Oxford English
Dictionary as ‘a proposed development of the Internet in which
everyday objects have network connectivity, allowing them to
send and receive data’, is invading our lives. In 2014, there were
approximately 2 billion IoT devices. That is more than the
number of laptops and desktop PCs combined (1.5 billion), and
comparable with the number of smartphones (1.8 billion) [1].
Some of the most common IoT objects are smart watches (note
that, in Q4 2015, the shipment of smart watches overtook the
shipment of Swiss watches [2]), fi tness wristbands (for humans
generally, but also for cats and dogs with devices such as Otto
Pet systems), smart TVs and smart glasses. But IoT devices are
actually found in a wide range of domains:

• Entertainment e.g. Archos music beany, Mattel’s Hello
Barbie connected doll.

 • High tech e.g. Recon Instruments’ augmented reality snow
mask, Narrative’s wearable cameras, tweeting house.

 • Fashion e.g. Volvorii’s connected high heel shoes or
garments.

 • Agriculture e.g. cow insemination.

 • Health and safety e.g. Netatmo June skin exposure detector,
Vigo’s drowsing detector, Glow-Cap medication reminder
caps.

 • Etc.

Yet, there are numerous concerns over the state of the privacy
and security of these objects. Under market pressure, attractive
connected objects are often sold too early without having
undergone proper security review, and sometimes even without
correct security design. For instance, an HP study [3] found that
90% of IoT devices collected at least one piece of personal
information, 70% of devices used an unencrypted network, and
six devices out of 10 with UI were vulnerable to issues such as
XSS and weak credentials. Acknowledging this status, IDC
predicted that 90% of IT networks would have had an IoT-based
security breach by December 2016 [4]. Some of the fears have
even reached consumers: Accenture Consulting conducted a
survey of 28,000 individuals in 28 different countries and
reported that 47% of consumers had privacy and security fears
over IoT [5].

Myth or reality? To assess the security and privacy of smart
objects, researchers need to closely analyse their implementation.
As technical documentation is seldom available, the fi rst step
usually consists of reverse engineering the device in question.
Reverse engineering is never an easy task, but it is particularly
diffi cult for IoT devices because (i) they use lesser known, more
specifi c components, and (ii) because smart objects are very
different from each other. The former requires expertise on lesser
known domains (e.g. operating systems such as Riot [6], Contiki
[7], Brillo [8]). The latter means that reversing one smart object
does not provide signifi cant helpful experience for reversing a
different one. For example, the reverse engineering of a smart
watch has little in common with the reverse engineering of a
connected toothbrush. Thus, experience gathered during the fi rst
task is of little help to the second.

This is precisely the issue this paper addresses. I propose a
simple methodology that I have used in the fi eld on several
occasions and which proved to be useful. This methodology
makes the fi rst few steps of reversing easier, and consequently
helps the researcher to understand the device more quickly. It
provides valuable information which can make further reverse
engineering more focused and better targeted.

The paper fi rst discusses prior work on this topic (section 2),
then explains the methodology (section 3). The following
sections illustrate the methodology using the examples of three
different smart objects: a connected toothbrush (section 4), a
smart watch (section 5), and a home safety alarm (section 6).
Finally, we consider the consequences of this methodology.

2. STATE OF THE ART
Although popular, security research on IoT is still in its early
days, with far fewer publications than in other fi elds such as OS
security. We can cite work on NEST thermostats [9],WeMo power
sockets [10], vulnerabilities in health infusion pumps [11],
injection of arbitrary code in Fitbit Flex dongles [12], Bluetooth
scanning [13], baby monitors [14], etc. Those pieces of research
provide interesting hints for reverse engineering IoT devices, but
they also illustrate how different smart objects are from each
other, and the amount of work the researchers had to undertake
in order to understand them.

[14] compares the task to a CTF (Capture the Flag), which seems
quite appropriate because each challenge is different and time

MOBILE APPLICATIONS: A BACKDOOR INTO INTERNET OF THINGS? APVRILLE

2 VIRUS BULLETIN CONFERENCE OCTOBER 2016

consuming, and there is no immediate solution available on the
web.

More academically, a few researchers have proposed
methodologies [15] or automated approaches [16, 17] to assist
in the reversing of fi rmware. [15] draws a checklist of the
different attack surface areas on IoT. The list is helpful for audit/
pen-testing as an aid to not to forgetting certain areas. However,
it is not intended to help with the reverse engineering, merely
aimed at covering all aspects. As for automated frameworks and
tools, they are promising, but still in their early stages, thus
diffi cult to use in practice.

3. METHODOLOGY
To ease the reverse engineering of IoT devices, this paper
proposes the following methodology. Instead of directly
reversing smart objects themselves, the methodology consists of
focusing fi rst on reversing the mobile applications that come
with them.

Many connected objects come with related mobile applications
to control, supervise or interact with them. For example, Meian
safety alarms come with an Android companion application to
help the end-user start, stop, get status or set zones for the
alarm. Similarly, Beam toothbrushes come with an iOS or
Android application that communicates with the smart
toothbrush, etc. When such a mobile application is available, we
argue it is a good idea to look into it:

1. Simpler. There are many tools for reversing mobile
applications (e.g. apktool, baksmali, clutch, IDA Pro).
Anti-virus analysts use these tools regularly to inspect
mobile viruses and thus there is a support community
around them.

2. Security. IoT vendors are often tempted to develop
these mobile applications for marketing reasons
(because they are attractive to the end-user) but don’t
integrate them as thoroughly in their security designs
(if there are any). Consequently, the mobile
applications often provide access to not-so-obfuscated
source code, and in worse cases, security vulnerabilities
which compromise the smart object itself, as we will
see in section 6.

3. Fallback. If the analysis of the mobile application is
insuffi cient, the researcher can always fall back to the
reversing of the smart object as a second step. It is quite
likely that the information gathered during the fi rst
stage will help perform a more focused reverse
engineering in the second stage.

4. BEAM TOOTHBRUSH

4.1 Overview

Smart toothbrushes have existed for a while, but received
particular media attention in 2015 when Beam Technologies
mentioned it would be starting a dental insurance plan around
its connected devices [18]. Each Beam toothbrush is attached to
a dental insurance plan, with its own particular offers (e.g. free
toothpaste) and affi liated dentists.

Compared to an insulin pump or pacemaker, a toothbrush
probably does not handle the most sensitive health data.
Nevertheless, the connection with an insurance policy raises a
few questions [19], and it certainly is interesting to investigate
how the toothbrush works, whether from an education point of
view or for security and privacy concerns.

The toothbrush does not come with any technical information
apart its commercial specifi cations [20]: Bluetooth LE 4.0
(BLE), sonic motor, size and colour. There is no user forum, no
developer community, and no academic publication.
Unfortunately, this is common for IoT devices: we have to start
from scratch with no information.

One option would have been to perform a hardware tear down
of the toothbrush: open it, get to the electronic components,
probe for test points, etc. Instead, we decided to focus on the
iOS and Android mobile applications that come with the device.

4.2 Reversing the iOS application

The reversing of the iOS application is helpful in terms of
architecture. The application uses a sqlite database named
BeamBrushData.sqlite, which contains several tables such as
BrushEvent, ClientDevice and ClientSession (see Figure 1). The
tables can be listed by searching for the keyword ‘primaryKey’
in function names.

Figure 1: SQL tables used by the mobile Beam Brush
application.

The contents of each table are described by functions named
mappings, for example [Insured mappings] for the Insured table.

Knowing the fi elds of each table is useful for understanding
what data is stored and may potentially leak to an adversary. For
example, the BTStarCardInfo table contains the variation of
stars for an end-user: name, beforeValue, afterValue, starCount,
lastTotalStars, totalStars. Stars are virtual points granted to an
end-user when (s)he completes given challenges such as
brushing his/her teeth for more than two minutes in a row. An
attacker can certainly try to modify the values here to gain
(undeserved) stars – although it is likely there are other checks,
on the remote servers for instance.

MOBILE APPLICATIONS: A BACKDOOR INTO INTERNET OF THINGS? APVRILLE

3VIRUS BULLETIN CONFERENCE OCTOBER 2016

The information stored in these tables may be valuable to
advertisement kits – or worse adware. For example, the Insured
table holds the title, fi rst name, middle name, last name, gender
and date of birth of the insured user, who is probably an adult of
the family (typically father or mother). Then, the User table
provides the same information for other members of the family,
for example children. Consequently, by analysing the data
contained in those tables, a spy can learn the composition of a
given family, and display targeted advertisement or sell the
email to spam lists.

Besides database structure, the disassembly of the iOS
application also reveals the structure of classes in the
implementation. The objc segment of the mobile application’s
binary provides a full overview of methods and fi elds for each
class. For instance, Figure 2 shows the fi elds – called properties
– (e.g. beamScore, numberOfBrushDaysLeft) and methods (e.g.
beamScoreRoundedInteger) for the UserSummary class.
Comments in IDA Pro are particularly useful and even provide
the signature for methods and type for each fi eld.

From this we learn:

 • The toothbrush contains an accelerometer and a gyroscope.
Both provide a three-axis vector in BTBrushData class.
That is how the toothbrush works out that an end-user is
brushing his/her teeth and which quadrant (the mouth is
divided into four areas, or quadrants: upper left, upper
right, lower right, lower left).

• Firmware Over-The-Air service. The contents of the
BTFirmwareUpdater class show there is an over-the-air
service for fi rmware updating. Updating the fi rmware
consists of sending bytes of the new fi rmware to the
toothbrush, until all bytes have been written.

char *fi rmware;
unsigned int totalLength;
unsigned int written;
unsigned int toWrite;
unsigned int loopCount;
int state;
CBService *otaService;
CBCharacteristic *otaControlPoint, *otaDataPoint;

• Stars are software only. The number of stars for a given
end-user is not stored on the toothbrush itself, but on the
mobile phone (and presumably on the remote server
databases). Indeed, the classes BTBrushData,
BTBrushEvent, Device and ClientDevice do not have a
fi eld for stars. From the content of those classes, we learn
that the toothbrush is made of a fi rmware, hardware, serial
number, fl ash, battery level, a motor (whose speed is
controllable), a three-axis gyroscope, a three-axis
accelerometer, an auto-off timer and a BLE capable chip.

4.3 Reversing the Android application
Reversing the Android application can reveal some other details.
For example, we know the toothbrush exports several BLE
services and characteristics (see Figure 3) but most of these,
except the standard ones (e.g. Generic Access), are unknown.

Figure 3: BLE characteristics of the toothbrush.

By reversing the Android application, it is relatively easy to fi nd
the meaning of each of these characteristics. For example, the
code in Figure 4 shows the UUID for the toothbrush’s motor
speed (which translates into brush strokes per minute) and
quadrant buzz (the toothbrush is capable of vibrating when the
end-user has spent enough time brushing a given dental
quadrant). Known BLE services and characteristics are listed in
Tables 1 and 2, respectively.

Figure 2: IDA Pro showing methods and properties of the UserSummary class. The comments for properties show the exact type of
fi elds.

MOBILE APPLICATIONS: A BACKDOOR INTO INTERNET OF THINGS? APVRILLE

4 VIRUS BULLETIN CONFERENCE OCTOBER 2016

UUID Description

00001800-0000-1000-8000-
00805f9b34fb

Generic access (standard)

c05fc343-c076-4a97-95d3-
f6d3e92a2799

Firmware OTA service

04234f8e-75b0-4525-9a32-
193d9c899d30

Beam service

89bae1fa-2b59-4b06-919a-
8a775081771d

Probably accelerometer/
gyroscope chip service

Table 1: BLE services of the Beam brush.

UUID Description

a8902afd-4937-4346-a4f1-
b7e71616a383

Boolean indicator for active
brushing

267b09fd-fb8e-4bb9-
85ccade55975431b

Motor state

3530b2ca-94f8-4a1d-
96beaa76d808c131

Current time

833da694-51c5-4418-b4a9-
3482de840aa8

Motor speed

19dc94fa-7bb3-4248-9b2d-
1a0cc6437af5

Auto-off and quadrant buzz
indicators (2 bits)

6dac0185-e4b7-4afd-ac6b-
515eb9603c4c

Battery level (2 bytes)

0971ed14-e929-49f9-925f-
81f638952193

Brush colour (1 byte)

0227f1b0-ff5f-40e3-a246-
b8140205bc49

Accelerometer data (6 bytes)

ed1aa0cf-c85f-4262-b501-
b9ddf586a1db

Gyroscope (6 bytes)

cf0848aa-ccdb-41bf-b1e1-
337651f65461

Button state

Table 2: Most interesting BLE characteristics of the Beam
brush.

With this information, we are able to control the auto-off and
quadrant buzz features using our own implementation.

Controlling the features consists of:

1. Initiating a BLE connection with the toothbrush.

2. Writing the byte value to the appropriate characteristic
UUID. The least signifi cant bit controls the quadrant
buzz, the second bit controls the auto-off.

3. Disconnecting from the toothbrush.

The BLE commands may be sent using libraries such as gattlib
[21] above bluez (Bluetooth stack implementation) and a simple
BLE USB dongle.

4.4 Pros and cons
Hacking discoveries for the Beam brush are summarized below,
with comments on the effi ciency a strategy which starts with the
reversing of mobile applications.

• Presence of a gyroscope and accelerometer. A hardware
tear down of the toothbrush would have achieved the same
result with more or less diffi culty depending on how well
the chips are sealed or packaged. Obviously the advantage
of reversing a mobile application is that we do not need to
open the toothbrush, and do not risk potentially ruining it.
The disadvantage is that we are not able to tell the brand
and model of the components, and thus their electronic
specifi cations.

• Existence of a fi rmware updating service. Such result
would have been diffi cult to obtain via other means
(perhaps by listening to the BLE traffi c).

• Number of stars not stored on the brush itself. This
would have been diffi cult to fi nd by hardware investigation,
probing or BLE scanning.

• Implementation design. Obviously, there is no way to get
this without disassembling the code. The only part we do
not see however is the hardware design.

• Identifi cation of BLE services and characteristics. This
would be feasible using a BLE scanner application (e.g.
nRF Master Control Panel [22]), but would take much
longer because identifi cation must be guessed by trying
various values and noticing the difference in behaviour on
the toothbrush.

Figure 4: BLE characteristics for motor speed and quadrant buzz.

MOBILE APPLICATIONS: A BACKDOOR INTO INTERNET OF THINGS? APVRILLE

5VIRUS BULLETIN CONFERENCE OCTOBER 2016

5. SMARTWATCH

5.1 Architecture
We experimented with Sony’s Smart Watch 2, also known as
‘SW2’.

Unlike the Beam brush, there is a lot of technical and developer
information available for this smart watch, because Sony
actually encourages developers to write new applications for it.
Sony consequently provides an API, documentation, examples
and tutorials. The smart watch features an STM32F439 SoC
(which includes an ARM Cortex-M4 and crypto accelerators), a
light sensor, an accelerator, support for NFC and Bluetooth 3.0
(note this is different and not compatible with Bluetooth Low
Energy), and a LiPo battery. It runs Micrium’s C/OS-II
real-time operating system.

Knowing this, an expert of C/OS-II or ST Microelectronics
SoC could certainly have continued the investigation on those
parts of the device. In this paper, we assume the researcher does
not have access to such experts, and instead we focus on the use
of the smart watch. To use the smart watch, at least two Android
applications must be installed: an application named Smart
Connect and another one called SmartWatch 2 SW2. It is
precisely those applications we propose to inspect.

To understand them, it is important to understand Sony’s
terminology. For Sony, a smart watch is, more generically,
known as a smart accessory because there are other types of
accessories, such as headsets. A smart watch ‘application’ (we
will see later there is actually no such thing) is known as a smart
extension.

To create a new smart extension, a developer compiles his/her
code with Sony’s Smart Extension API. This creates a real
Android application (an .apk that researchers can reverse with
standard tools such as apktool, baksmali etc.) – but the
application will only work if the two applications we mentioned
earlier are both installed.

So, to install the smart extension, an end-user actually installs the
developer’s apk, i.e. an Android application. This application is
automatically seen by Smart Connect, one of the two mandatory
applications, and added to the appropriate smart accessory. The
new smart extension icon appears on the smart watch.

Name Description

Host application Generic term for Android applications dedicated to communication with a given smart accessory.

Smart accessory Generic term for smart watches, smart headsets etc.

Smart Connect This is one of the two mandatory Android applications that must be installed on the smart phone to be able to
use the smart watch. It is an offi cial Sony application. It manages which extension uses which accessory. Its
package name is com.sonyericsson.extras.liveware.

Smart extension This is an Android application, which runs on the phone, but is accessible/controllable remotely from the
smart watch. Sony provides several extensions (Twitter feed, Facebook feed, Chrono) and encourages
developers to create their own.

Smart Watch 2 SW 2 This is the other of the two mandatory Android applications for the SW2. Actually, it is the host application
for the SW2 accessory. This is an offi cial Sony application. It is curiously named com.sonymobile.
smartconnect.smartwatch2.

Table 3: Sony’s terminology for the Smart Watch.

Note there is no direct installation on the smart watch itself. As
a matter of fact, there is no concept of a smart watch application
at all. Indeed, all the work of the smart extension is performed
on the smart phone. The smart watch basically acts as a remote
display. The various events and messages the smart extension
generates go through the second of the two mandatory
applications, SmartWatch 2 SW2. This application is actually
what Sony calls a host application, i.e. an Android application
dedicated to communication with a given smart accessory (in
our case, a SW2). The various terms are outlined in Table 3 and
Figure 5, as some of them are unfortunately misleading.

Figure 5: Sony Smart Watch 2 architecture.

5.2 Consequences

With this architecture in mind, the immediate consequence is
that any extension on the smart watch can actually be analysed
by reversing the code of its Android application.

Let’s suppose, for instance, we inspect an extension which
sends SMS messages. There is nothing to reverse on the
smart watch itself. Everything can be done by disassembling
the Android application where we will see something like
smsManager.sendTextMessage(mPhoneNumber, null,
message, ...). If smart watch malware were to exist and
propagate, anti-virus vendors would merely have to write
signatures for the corresponding Android applications, which
is something they already know how to do.

MOBILE APPLICATIONS: A BACKDOOR INTO INTERNET OF THINGS? APVRILLE

6 VIRUS BULLETIN CONFERENCE OCTOBER 2016

The same can be done with the offi cial SmartWatch 2 SW2
host application. The reversing shows that communication
with the remote smart watch is handled by ‘Costanza’
messages. Those messages consist of a type (type of message),
a message identifi er and the packed buffer bytes. The packing
or unpacking is handled by a native library named ‘protocol’
(libprotocol.so). Once packed, the messages can be sent by
Bluetooth – this is performed using the Android API, opening
a Bluetooth socket. There are several different types of
Costanza messages, such as:

• Battery level indication (id = 18). Level is provided as a
percentage.

• Factory reset request and response (id = 20 or 21).

• ‘Force crash’ (id = 666). The source code shows there is
apparently a hidden debug screen where a button ‘Force
crash on watch’ appears. This creates the following
message:

public RequestForceCrash(int
newMessageId) {
super(newMessageId);
this.type = 666;
this.mMagic = 0xC057A72A;
}

 Note the type 666 and magic value which more or less
matches ‘costanza’ in leet speak.

• Fota request (id = 6). This probably means Firmware
update Over The Air.

• Sensor data (request or response) (id = 127 or 128).

• Swipe indication (id = 116).

• Version request and response (id = 4 and 5).

• Vibration request (id = 129), where the duration the
vibration is on, then off and the number of iterations.

The use and identifi er of those messages would have been
diffi cult to fi nd by other means (especially the Force Crash
message which does not appear in normal circumstances).
Again, this proves how profi table the inspection of mobile
applications is for IoT.

6. SAFETY ALARM
Meian is a manufacturer of home safety alarms. Some of the
company’s alarms are remotely controllable via SMS: you can
start/stop the alarm remotely, get its current status, enable/
disable some zones, etc. The commands must comply to a strict
format, and of course, must contain a correct password. To
control his/her alarm, the end-user is expected to write an SMS

Situation: can an attacker retrieve the
alarm’s password or phone number...

... from a command SMS in the
outbox?

... once the SMS messages are erased?

Manual SMS Yes No

With Meian’s Android application Yes Yes

Table 4: Security status with or without the home alarm’s companion application: unfortunately better without the mobile application!

(which complies to the requested format) and send it to the
alarm. The alarm receives the SMS, processes incoming
messages and replies if okay or not.

As the format for SMS message is strict, Meian has
implemented an Android application that automatically formats
the SMS. During set-up, the end-user provides the confi guration
of his/her alarm: the alarm’s phone number, management
password, acceptable delay to enter the password, emergency
phone number (which is called if an intrusion is detected). Then,
the application simply offers buttons to start/stop/get status
(etc.) of the alarm (see Figure 6), which is quite handy.

Figure 6: Main screen of the Android application for remote
control of one’s home safety alarm.

Applying the same methodology, we analyse the mobile
application. There are two security issues:

1. SMS not deleted. The outgoing SMS remains on the
smartphone, unless manually erased. Consequently, if
an attacker reads it, s/he gets the alarm’s password.
Note this issue is present whether the end-user uses the
application or not (manually writes the SMS).

2. Weak protection of alarm’s confi guration. The
application implements hand-made and unfortunately
weak crypto to protect confi guration data (phone
number, password, emergency phone number and
delay). Note that confi guration data is sensitive because
anybody can control the alarm with it. The
cryptographic algorithm can easily be reversed to
decrypt any settings (see proof of concept in Figure 7).
The vulnerability was reported to Meian in 2015 [23],
who did not respond. The application remains

MOBILE APPLICATIONS: A BACKDOOR INTO INTERNET OF THINGS? APVRILLE

7VIRUS BULLETIN CONFERENCE OCTOBER 2016

unpatched on the Play Store, and has been downloaded
between 1,000 and 5,000 times.

Figure 7: Proof of concept decrypting all major confi dential
settings of the safety alarm.

The security status of this home safety alarm is summarized in
Table 4. Unfortunately, it illustrates one of the worse cases of
security for IoT where the use of a companion mobile
application actually worsens the security of the device.

7. CONCLUSION
The security analysis of IoT devices can be challenging, mostly
because of their variety, and sometimes researchers don’t know
how or where to start. This paper shows that, in such cases, it is
interesting to grab the mobile applications which are meant to
communicate with those connected objects, and use them as a
starting point. Those mobile applications are quite common for
IoT devices.

In this paper, I present three different devices I analysed through
their mobile applications: a connected toothbrush, a smart watch
and a home safety alarm. In all cases, the strategy quickly
revealed implementation design, protocol details and
vulnerabilities. Some of those fi ndings could probably have
been discovered by other means, e.g. Bluetooth scanning and
fuzzing, but it would have taken much longer because we would
have had to guess several aspects, whereas mobile application
reverse engineering provides certitude.

The fact that IoT and mobile applications are intrinsically tied
together has several consequences. First, of course, vendors
should spend more time on a secure design and implementation
of their devices, but also of the related mobile applications.
Note that a quick fi x consisting of obfuscating the code will not
work: security by obscurity has been discredited on numerous
occasions. It is the design and the implementation which needs
to be improved. Second, the anti-virus industry needs to be
prepared for IoT malware, whether coming from the devices
themselves or from mobile applications. This is probably the
next malicious battle we will have to fi ght.

ACKNOWLEDGEMENTS
I would like to thank Beam Technologies for providing a free
user account for testing purposes. This test account is not

attached to any insurance plan. Thanks also to students Axel
Ehrenstrom and Soufi ane Joumar, and their supervisors,
Aurelien Francillon, Ludovic Apvrille and Ruchna Nigam for
their initial work on Sony’s smart watch.

REFERENCES

[1] BI Intelligence. The internet of everything: 2015.
http://uk. businessinsider.com/internetof-everything-
2015-bi-2014-12?r=US&IR=T#like-this-
decksubscribe-to-bi-intelligencebelow-6.

[2] StrategyAnalytics. Global Smartwatch Shipments
Overtake Swiss Watch Shipments in Q4 2015.
https://www.strategyanalytics.com/strategy-analytics/
news/strategy-analyticspress-releases/strategyanalytics-
press-release/2016/02/18/global-smartwatchshipments-
overtake-swisswatch-shipments-in-q4-2015#.
Vs8cw0J59hH, February 2016.

[3] Hewlett Packard. Internet of things research study.
http://h20195.www2.hp.com/V2/GetDocument.
aspx?docname=4AA5-4759ENW&cc=us&lc=en,
2015.

[4] IDC. IDC Reveals Worldwide Internet of Things
Predictions for 2015, December 2014.
https://www.idc.com/getdoc.
jsp?containerId=prUS25291514.

[5] Accenture Consulting. Igniting growth in consumer
technology. https://www.accenture.com/_acnmedia/
PDF-3/Accenture-Igniting-Growthin-Consumer-
Technology.pdf.

[6] Baccelli, E.; Hahm, O.; Wählisch, M.; Guìnes, M.;
Schmidt, T. RIOT: One OS to Rule Them All in the
IoT. Research Report RR-8176, INRIA, December
2012.

[7] Contiki: The Open Source OS for the Internet of
Things. http://www.contiki-os.org/.

[8] Brillo. https://developers.google.com/brillo/.

[9] Hernandez, G.; Arias, O.; Buentello, D.; Jin, Y. Smart
Nest Thermostat: A Smart Spy in Your Home, 2014.
BlackHat US.

[10] Buentello, D. Weaponizing your coffee pot. DerbyCon,
2013.

[11] Hospira Lifecare PCA Infusion Pump 412 Telnet
Service weak authentication. CVE-2015-3459.
http://www.scip.ch/en/?vuldb.75158.

[12] Apvrille, A. Geek usages for your Fitbit Flex tracker.
Hack.lu, October 2015. http://2015.hack.lu/
archive/2015/fi tbit-hackluslides.pdf.

[13] Wueest, C. Quantifi ed Self – A Path to Self-
Enlightenment or Just a Security Nightmare?, 2014.
BlackHat Europe.

[14] Wineberg, W. Internet of Things: Hacking 14 Devices,
August 2015. DEFCON 23.

http://uk. businessinsider.com/internetof-everything-2015-bi-2014-12?r=US&IR=T#like-this-decksubscribe-to-bi-intelligencebelow-6
https://www.strategyanalytics.com/strategy-analytics/news/strategy-analytics-press-releases/strategy-analytics-press-release/2016/02/18/global-smartwatch-shipments-overtake-swiss-watch-shipments-in-q4-2015#.V3pZvLh96Uk
http://h20195.www2.hp.com/V2/GetDocument.aspx?docname=4AA5-4759ENW&cc=us&lc=en
https://www.idc.com/getdoc.jsp?containerId=prUS25291514
https://www.accenture.com/_acnmedia/PDF-3/Accenture-Igniting-Growthin-Consumer-Technology.pdf
http://2015.hack.lu/archive/2015/fitbit-hackluslides.pdf

MOBILE APPLICATIONS: A BACKDOOR INTO INTERNET OF THINGS? APVRILLE

8 VIRUS BULLETIN CONFERENCE OCTOBER 2016

[15] Miessler, D. IoT Attack Surfaces, August 2015.
DEFCON 23.

[16] Costin, A.; Zaddach, J.; Francillon, A.; Balzarotti, D. A
large scale analysis of the security of embedded
fi rmwares, 2014. BlackHat Europe.

[17] Zaddach, J.; Bruno, L.; Francillon, A.; Balzarotti, D.
Avatar: A framework to support dynamic security
analysis of embedded systems’ fi rmwares. Network and
Distributed System Security (NDSS) Symposium,
NDSS 14, February 2014.

[18] Higginbotham, S. Meet a startup building an insurance
business around a connected toothbrush. Fortune.
http://fortune.com/2015/06/26/connected-toothbrush-
insurance/.

[19] Apvrille, A. Insurance Fraud via Internet of Things,
July 2015. http://blog.fortinet.com/post/insurance-
fraud-via-internetof-things.

[20] Beam Technologies. https://www.beam.dental/tech.

[21] gattlib. https://bitbucket.org/OscarAcena/pygattlib.

[22] Nordic nRF Master Control Panel.
https://www.nordicsemi.com/eng/Products/Nordic-
mobile-Apps/nRF-Master-Control-Panel-application/
(language)/eng-GB.

[23] Fortinet Discovers Meian Safety Alarm Android
Application Weak Credential Encryption Vulnerability.
http://www.fortiguard.com/advisory/fortinet-discovers-
meian-safety-alarm-android-application-weak-
credential-encryption-vulnerability.

http://fortune.com/2015/06/26/connected-toothbrush-insurance/
http://blog.fortinet.com/post/insurance-fraud-via-internetof-things
https://www.nordicsemi.com/eng/Products/Nordic-mobile-Apps/nRF-Master-Control-Panel-application/(language)/eng-GB
http://www.fortiguard.com/advisory/fortinet-discovers-meian-safety-alarm-android-application-weak-credential-encryption-vulnerability

