GREAT CRYPTO FAILURES

Ben Herzog & Yaniv Balmas
Check Point Software Technologies, Israel

Email {benhe, yanivb}@checkpoint.com

ABSTRACT

In this work, we survey selected recent case studies of
unfortunate cryptographic implementations in malware.
When considered together, these examples illustrate a picture
of design anti-patterns that is either worrying or encouraging,
depending on one’s point of view. Malware authors compose
primitives based on gut feeling and superstition; jump with
eagerness at opportunities to poorly reinvent the wheel;

jump with equal eagerness at opportunities to use ready-made
code that perfectly solves the wrong problem; and,
ever-pragmatic, take care to misinform their audience about
how their software works, to dissuade anyone from taking too
close a look.

We draw conclusions from these case studies that might be of
use to those of us on the wrong side of the malware barrel —
victims and analysts.

INTRODUCTION

Cryptography has become part and parcel of malware. It is used
to subject victims to extortion, perform covert communications
and achieve stealth. But just as it is essential, cryptography is
easy to misimplement. Even the most experienced and astute of
developers are wont to be tripped up by the pitfalls of
cryptography.

Most malware authors operate in a unique environment and are
subject to unique incentives. They are as cynical about code
quality as the most cynical developing houses: they are on a tight
schedule, they have no customers to answer to, and they only
care about quality design or implementation insofar as either of
these things affects their immediate bottom line. Their creations
survive by being stealthy, unique and simple; therefore, they
would rather not borrow an existing solution to a large problem
if they can help it.

This cocktail of constraints pushes malware authors into
committing a class of errors that one would be hard pressed to
find in legitimate software of any repute. These are not padding
oracle vulnerabilities or goto-fails; these are basic
misunderstandings of how to use cryptographic tools properly,
which at best broadcast ‘I have no idea what I am doing’, and at
worst cripple the malware catastrophically such that it does not
actually do what it set out to do.

It is difficult to give this class of errors a name or a rigid
definition. We have found that it is useful to look at them through
the lens of design anti-patterns — specifically those that stem
from the incentives to which most malware authors bow: a fuzzy
understanding of the details, a great rush, and the temptation
(sometimes necessity) to Do It Yourself.

GREAT CRYPTO FAILURES

VOODOO PROGRAMMING

The Jargon File [1] gives the following definition of ‘voodoo
programming’:

‘The use, by guess or cookbook, of an obscure or hairy
system, feature, or algorithm that one does not truly
understand. The implication is that the technique may not
work, and if it doesn’t, one will never know why.’

Voodoo programming is something beyond a mere dodgy
implementation choice. It is an implementation choice that
betrays a deep confusion about the functionality being invoked
— what it is, what it does, and why it might fail. We describe two
examples of malware we have encountered that, we believe,
contain cryptographic code that falls under this category.

Zeus

Zeus is a banking trojan that originated in Russia in 2007. It is
estimated to have infected millions of machines and caused tens
of millions of dollars in damages in the US alone [2]. In 2011,
the source code of Zeus was leaked [3], which enabled a more
thorough look through Zeus’ internal functionality.

One of the major aspects of Zeus is its dependency on
communication with a working C&C server. Much of the
malware’s functionality is configurable dynamically through this
server, and Zeus periodically contacts it for further orders. The
authors chose to encrypt all such control traffic with RC4, a
popular stream cipher.

The security of RC4 is the subject of some debate, which we will
not cover here. The bottom line is that, for the purposes required
by the authors here, RC4 definitely ought to be secure enough,
barring some egregious design error. However, the authors of
Zeus did not share this feeling, which is why they introduced
their own tweak: after the traffic is encrypted using RC4, every
byte is modified by XORing it with the next byte to produce the
final ciphertext [4].

It is not difficult to show that this tweaked variant of RC4 is
exactly as secure as plain, vanilla RC4. The following Python
script converts tweaked RC4 ciphertext to equivalent vanilla RC4
ciphertext:

chrxor = lambda cl, c2: chr(ord(cl)“ord(c2))
def untweakRC4 (buf) :

bytes = []
while (buf) :
bytes = [buf[-1]] + bytes
buf = buf[:-1]
try: bytes[0] = chrxor (bytes[0],bytes[1])

except IndexError: pass #first byte
return "".join (bytes)

The authors either did not realize this, or did realize this, and
were aiming for security by obscurity. Security by obscurity is
not a recommended approach, least of all here, where there is
plenty of encrypted traffic to analyse and plenty of Zeus samples
floating around that can be reverse engineered.

Linux.Encoder

The Linux.Encoder ransomware’s initial claim to infamy lay in
using rand() with the current timestamp as a random seed. This

GREAT CRYPTO FAILURES

turned out to be insecure; the timestamp was invariably close to
the victim file’s ‘last modified’ timestamp, which enabled an
efficient attack against Linux.Encoder encryption, as pointed
out by Caragea [5].

. the grugq {¥ 2 Follow

Reminder to everyone: srand(time()) is not
cryptographically secure! You need to do
srand(md>5(time())).

Lol Rot Bl 4] J

57 90

Figure 1: Twitter reacts to the first version of Linux.Encoder.

Linux.Encoder’s authors were subsequently met with a hail of
ridicule on Twitter, and decided to go back to the drawing
board. One of the modifications they eventually made to their
malware involved hashing the timestamp eight times and using
the result as an AES key [6].

Using a hash function eight consecutive times on an input shows
a deep misunderstanding of what hash functions are. An ideal
hash function is deterministic, easy to compute and difficult to
invert. An ideal hash function, composed with itself, does not
yield a better hash function, but rather an odd creation that has
weaker security properties and is marginally less efficient to
compute. The details will vary depending on the exact function
used, but in all probability, they will not be good news.

It is true that hash functions used in the real world are not ideal
mathematical abstractions, but their faults and vulnerabilities
have not been shown to improve when composed with
themselves, and it is not clear where the magic number eight
came from.

Were the authors truly worried that their chosen hash function
was not secure enough? We will probably never know; in the
actual implementation, they neglected to choose a hash function
at all. As a result, all eight calls to the hashing logic did not, in
fact, do anything.

CARGO CULT PROGRAMMING, A.K.A. THE
CTRL+C+V METHOD

The late physicist Richard Feynman is known for many things,
one of which is the popularization of the term ‘cargo cult
science’ [7] — activity that superficially emulates science without
emulating the core principles that make science work. From this
neologism, others have derived ‘cargo cult programming’

— programming that emulates solutions to problems without
understanding why, or how, these solutions work. This modus
operandi is also, and more commonly, known as ‘copying and
pasting from Stack Overflow’.

Emulating a solution that is known to work is a viable strategy.
It might, however, turn out to be the solution to the wrong
problem. Without an understanding of what the solution does,

one cannot really make the distinction, and might end up using
code that performs almost what one had in mind, but not quite.
The consequences can be dire, as we will see in the example
below.

CryptoDefense

The recent flood of ransomware was preceded by a slow drip of
copycats that goes back years, to the first pioneers who braved
the unknown and copied what CryptoLocker did. One of the
‘early adopters’ to have been a part of this trend was
CryptoDefense, a malware effort inspired by CryptoLocker,
which surfaced around February 2014 [8].

On the face of it, CryptoDefense did everything by the book:
RSA-2048 encryption, payment via Bitcoin, communication
with C&C servers via Tor — where it matters, the authors put in
the effort. One front on which they did not put in the effort,
however, was re-implementing RSA. Instead, they reasonably
opted to use a low-level cryptographic API offered by Windows
OS.

To be more specific, they set out to acquire Windows’
cryptographic services by calling the CryptAcquireContext API
function. A typical developer would just use one of the many
wrapper functions available for this API function, but malware
authors are not typical developers, and one imagines they soon
found themselves reading the MSDN documentation for
CryptAcquireContext. The documentation [9] is typically
exhausting, but thankfully at the end of it lies the holy grail — a
fully formed call to CryptAcquireContext that just works, and
can be copied. It goes as follows:

CryptAcquireContext (
&hCryptProv, '/ handle to the CSP
UserName, // container name
NULL, // the default provider

PROV_RSA_FULL,
0): // flag values

And now all is right with the world, and the malware can invoke
RSA to its heart’s content. This code, or at least something
suspiciously like it, appears in CryptoDefense verbatim. There
is only one problem, though — which was noted first by
researchers at Emsisoft [10], and which makes itself apparent to
any soul brave enough to actually read through all of the
documentation. It concerns a certain option that can be set in the
flags variable:

CRYPT_
VERIFYCONTEXT

For file-based CSPs, when this flag
is set, the pszContainer parameter
must be set to null. The application
has no access to the persisted
private keys of public/private key
pairs. When this flag is set,
temporary public/private key pairs
can be created, but they are not
persisted.

One might conclude that, if this option is not set, the application
has access to the persisted private keys of public/private key
pairs, which are persisted. Or, in other words, the private key is

kept in the local key-store. A justifiable choice for some
applications, but clearly not something the authors of
CryptoDefense would have knowingly endorsed; their extortion
pivot — the private key — was kept safely in the victim system,
ready to be found by anyone who knew where to look. By
taking advantage of this little misstep, Emsisoft researchers
were able to reach out to victims and help them decrypt their
files for free.

REINVENTING THE SQUARE WHEEL

The adage goes, ‘if you find yourself typing the letters A E S,
then you are doing it wrong’. But malware operates under a set
of constraints very unlike those relevant to most other software.
If Joe Developer finds an open source project that solves a
problem for him, he can happily lean on the project and save
himself needless work; in contrast, if James Malware-Author
finds himself in a similar situation, the way forward for him is
not so simple. Compiling software with statically linked
third-party code is a minor yet real hassle, compared to the
cowboy programming typical of malware development. The
extra code will bloat the executable size, and under certain
circumstances, may well act as a giant neon sign announcing the
malware’s intent to the world.

Given the above, malware authors tend to improvise. If a
solution to a problem cannot be copied and pasted from
anywhere, but can be hacked together in 100 lines of code, a
malware author will choose simply to hack together the 100
lines of code rather than comb the web for an existing solution
and link against it.

When one sets out to reinvent the wheel, one takes upon oneself
the risk of reinventing the wheel poorly. We list three examples
of malware projects that ran head-first into that risk.

Petya

Petya, a member of the recent tidal wave of ransomware, made
headlines due to its ability to encrypt the internal data structures
of the victim’s hard drive (such as the Master Boot Record and
the Master File Tables). These abilities were pioneered by
Petya; no other ransomware before it boasted this feature.
Generally speaking, the Petya authors were tired of the same old
ransomware routines and wanted to do something fresh and
exciting, which is why — faced with the choice of encryption
algorithm — they went with the lesser-known stream cipher,
Salsa20 [11].

Salsa20 is thought to be more resistant against scary NSA-level
attacks than its cousin stream cipher RC4, but that’s really
neither here nor there; the prototypical victim of ransomware is
Aunt Alice and her precious vacation photos, and Alice does not
work for the NSA (or at least her husband, Bob, believes as
much).

Given that it is a lesser-known cipher, public resources detailing
how to implement Salsa20 are less obviously abundant. The top
result on programmer collaboration site Stack Overflow
regarding Salsa20 involves a wide-eyed newcomer asking how
to implement that algorithm in C++, and a horrified regular
contributor responding:

GREAT CRYPTO FAILURES

‘If you are going to use Salsa20 in real code and you are
asking questions like this, you probably want to use the NaCl
library with nice friendly C++ wrappers.’

Having no patience for NaCl and with juicy ransomware dollars
within their sight, the authors of Petya bravely rushed in where
angels fear to tread and went at it — reimplementing Salsa20
from scratch. It was a difficult mission, the odds were against
them, there were points at which all must have seemed lost.
Naturally, given the above, they failed.

To understand how, we must first delve a little into Salsa20 —
specifically its keystream. It is structured as follows:

1. Sigma (a string with a constant value: ‘expand
32-byte k’)

2. First 16 bytes of the user-controlled password
3. The IV (nonce)

4. 64-bit stream position

5. Last 16 bytes of the user-controlled password

On the face of it, this should be completely straightforward to
implement. Yet, given the example set by Petya, it begins to
emerge that if you believe anything in cryptography is
completely straightforward to implement, either you don’t
understand cryptography, or it doesn’t understand you. The
Petya implementation of this apparently straightforward logic
had no fewer than three distinct major flaws that made possible
an attack on the resulting cipher.

The first flaw was the use of a 32-bit integer type for the 64-bit
stream position key-stream value, which forces the high part of
the stream position buffer to have the predictable value of 0.

The second flaw was in the implementation of the ROTL (rotate
left) function:

static unit32_t rotl(uint32 t value, int shift) {
return (value << shift) | (value >> (32 - shift));

}

This re-implementation is nearly identical to the original, except
for one difference — for an unknown reason, the authors chose to
use 16-bit parameters instead of the original 32-bit.

The third flaw is located in the Salsa20 core hashing function
responsible for producing the key stream. The original
implementation receives a 512-bit input key buffer which is split
into two internal 256-bit buffers:
static void s20_hash(uint8_ t seq[64]) |
int i;
uint32 t x[16];
unit32 t z[16]; // <<<

for (i=0; i<16; ++1i)
x[i] = z[i] = s20 littleendian(segq + (4 * 1i));
for (i=0; i<10; ++1)

520_doubleround(z)

for (i=0; i<le; ++i) |
z[1i] += x[1i];
s20_rev_littleendian(seq + (4 * i), z[i]);

GREAT CRYPTO FAILURES

Petya’s implementation uses the same code but the internal
buffers are — yes, you guessed it — wrongly downsized to 16-bit
values:
static void s20 hash(uint8 t seq[64]) {

int i;

uintleée t x[16];

unitlé t z[16];

for (1=0; 1i<16; ++1)
x[1] = z[i] = s20_littleendian(seq + (4 * 1i));
for (i=0; i<10; ++1)

s20_doubleround(z)

for (i=0; i<16; ++1i) {
z[1] += x[i];
s20 rev littleendian(seq + (4 * i), z[i]);
}
}

Thanks to these three flaws, Petya generates a 512-bit key
containing 256 bits of constant and predictable values.

When your implementation of a cipher cuts its effective key size
by half, and the required time for a break by 256 orders of
magnitude, it’s time to go and sit in the corner and think about
what you’ve done.

The variables needed for the Diffie-Hellman key exchange are
sent by the exploit code to the server as a JSON file containing
strings of hexdigits, as shown in Figure 3.

This JSON is parsed and each value is passed as a parameter to
the getGmp() function:

$df vars = json_decode ($raw_req);
$g = getGmp ($df vars->g);
$p = getGmp (Sdf_vars—>p);
$A = getCmp (Sdf_vars—>a);
$b = gmp_random bits();:
SB = gmp_powm($g, $b, $p):
$sec_key = gmp_powm($A, b, Sp):;

Figure 4: Parameters being passed to getGmp function.

The getGmp() function handles the parameters using base64
decoding:

function getGmp ($a) {
return gmp_init(baseﬁ4_dscode($a),):

Figure 5: Base64 decoding takes place.

And everything is in order, except for one small technical
caveat, which is that a string of hexdigits and base64 encoding

are not the same thing.

0000:0000 65 7€ ac 64 cc a4 c7 %a e7 da dl ae d0 acj>i
0000:0010 [SHEE!

[TIE 6e 6<[20 33 e 7c 22 00
WOLHPI 00 00 00 00 00 00 00 OOREPRFE! ee &8 bd 66

0000:0030 f1 ee ea el ab 62 ce a8 c5 I6jNENE

getGmp() sees the stream of hexdigits, attempts to decode it as a
base64 string, fails, shrugs, and returns False. The Nuclear

Figure 2: Illustration of reduced-entropy key. Constant,
predictable values of the key are coloured grey.

Nuclear

From this document one might get the impression that
ransomware instances are the sole perpetrators of crypto failures
in malware. Lest the reader leave with this false impression, we
turn our attention to one of the most widely distributed exploit
kits of recent times: Nuclear.

Nuclear has been around since as early as 2009, and has
constantly evolved to keep up with developments in the exciting
field of exploit kits [12]. Following in the footsteps of Angler
and others, it eventually began obfuscating its exploit delivery
by using Diffie-Hellman key exchange to encrypt information
passed to exploits during execution [13].

server is then tasked with using this value as the infected client’s
public key. For a fleeting moment it stops and thinks, ‘huh,
false? How is that a key?’. The moment passes quickly. False,
the server recalls, is just another name for the integer. Having
realized this, the server then happily proceeds to follow the DH
scheme as scheduled, and the same goes for the client. Thus,
they successfully agree on a secret shared key:

Ab: 0/7: O :OU :gl)(l :Bu

All future communication between the client and the server is
encrypted using the secret key, 0.

DirCrypt
Like CryptoDefense, DirCrypt is an early contender that sought
to ride the ransomware wave during 2014, when it was just

getting started. Unlike CryptoDefense, DirCrypt does not check
all the boxes for how to perform extortion ‘properly’; rather, it

Figure 3: JSON in transit.

makes its own bold artistic decisions, some of which are decent
while others are less so.

DirCrypt adopts a hybrid approach to encrypting victim files.
The first 1,024 bytes are encrypted using RSA, and the rest are
encrypted using the ever-popular RC4, which is a relative
breeze to implement and therefore often finds its way into
malware.

Unfortunately for the authors of DirCrypt, a system does not
become secure just because you’re using RC4. That cipher is, as
mentioned earlier, secure enough for the purposes of presenting
a total stumbling block to the typical malware analyst with only
traffic to look at, but this only applies if the cipher is operated
correctly. In the case of DirCrypt, the encryption machinery is
invoked from scratch, using the same key, when encrypting each
file [14]. This is a classical key-reuse vulnerability, and it
exposes the encrypted files to trivial known-plaintext attacks,
and even some known-ciphertext attacks (in particular see [15]).

L
)
07A push [ebprdusizenfBasicFilenane] ; nHumberOfBytesTodrite
078 push [ebpspszBasicFilename] ; 1pBuffer
07 push hFile i hFile
8o call WeiteToFile i Write Filenane
074 test eax, Bax
07a jz 1oc_&@z111
¥
o - @

W7 push Dk

78 peop eax

Wi push ean i nHunberOFBytesTodrite)
WiE push oFfset TenByteSymmetrickey : Lpbuffer
WIE push nrile - e

080 now ebpedul engthifkey], eax
080 call UriteToFile ; Ueite key
w4 test eax, eax

o7 je Loc_ w2111

L]

Figure 6: DirCrypt stores the RC4 key in the victim file.

What makes the story of DirCrypt truly extraordinary, however,
is not the key-reuse. That is an understandable mistake; to
avoid it, one must have some elementary knowledge of how
stream ciphers work and how they can fail, and sometimes you
just don’t know what you don’t know. The truly astounding bit
with DirCrypt is the design choice for where to store the RC4
key. The authors opted to keep the key appended to the
encrypted file, where it is directly accessible to the victim. It
thus became trivially possible to recover bytes 1024 and on for
every encrypted file. For some files, with long enough and
predictable enough headers, it became possible to recover the
entire file this way.

WHAT YOU SEE IS NOT WHAT YOU GET

In the game of malware authorship it is often the case that the
winning move is to bluff. A malware author can work
tirelessly to fortify their creation using the most impeccable
cryptographic design and implementation; or, for a fraction of
the effort, they can intimidate victims into believing that they
have done so.

We present two examples of malware outright lying to victims,
handing out baseless threats and promises in lieu of solid code
to actually back up those threats and promises.

GREAT CRYPTO FAILURES

Nemucod

Nemucod is a JavaScript trojan, spread mainly through spam
email. Originally a mere dropper, in early 2016 it decided to
jump onto the now-speeding ransomware bandwagon. Users
unfortunate enough to run the new and improved Nemucod soon
faced a triumphant announcement that their files had been
encrypted with RSA-1024 encryption and that they had no
choice but to pay up.

ATTENTIONY

A1l your documents, photos, databases and other important personal files

ere encrypted using strong RSA-1824 algorithm with a unique key.

fo restore your files you have to pay 8.68358 BTC (bitcoins).

Please follow this manual:

M. Create Bitcoin wallet here:
https://blockchain.info/wallet/new

P. Buy 08.60358 BTC with cash, using search here:
https://localbitcoins.com/buy_bitcoins

B. Send B.68358 BTC to this Bitcoin address:

B. Open one of the following links in your brouser to download decryptor:

t6Rb

H counter/?ad=|
H counter/7ad=

5. Run decryptor to restore your files.

PLEASE REMEHMBER:

If you do not pay in 3 days Y0U LOOSE ALL YOUR FILES.

Hobody can help you except us.

It's useless to reinstall Windows, update antivirus software, etc.
Your files can be decrypted only after you make payment.

You can find this manual on your desktop {(DECRYPT.txt).

Figure 7: Nemucod ransom note.

However, this triumphant announcement is, in fact, not entirely
true. First of all, it is displayed after the necessary components
for encryption have been downloaded from the campaign’s
C&C server, but before even a single file has been encrypted. If
a victim’s AV engine is vigilant enough, or if the downloaded
encryption machinery meets with some other unfortunate
accident, the encryption routine proceeds to fail hilariously: all
‘rename file’ calls that follow go through successfully, but all
the ‘encrypt’ calls fail. The result is confused victims who have
been quoted as saying, ‘all this ransomware does is change your
file extensions’.

add eax, edx
mouv ecx, [ebp+allocated_char_pir 2]
mouzx ecx, byte ptr [ecx]
movzx edx, byte ptr [eax]

T Reg[izlen(key)]

®or ecx, edx

mou eax, [ebp+allocated_char_ptr_1]
mow [eax], cl

mow eax, SEEK_CUR

push eax 5 Origin

moyv eax, -1

push eax ; DFfset

nou eax, [ebp+File]

push eax ; File

call fseek

add esp, BCh

nou eax, [ebp+File]

push eax ; File
mow eax, 1

push eax ; Count
moyv eax, 1

push eax ; Size
mou eax, [ebp+allocated_char]
push eax ; St
call furite

Figure 8: Nemucod encryption logic. Not pictured: RSA-1024.

GREAT CRYPTO FAILURES

Of course, most of the time, the encryption will go through

— but not the RSA-1024 encryption promised by the menacing
ransom note. Rather, Nemucod encrypts files using a simple
rotating XOR cipher. This is basically one step of sophistication
up from XORing every byte with 0x55. As far as ransomware
sophistication goes, Nemucod sets the gold standard for
minimal effort. It trusts that this minimal effort should be
enough, and that would-be adversaries will become light-headed
and weak at the knees the moment they hear the phrase
‘RSA-1024".

Poshcoder

Poshcoder is yet another member of the first wave of
CryptoLocker-act-alikes that hit the malware scene during 2014.
It would be another faceless name in the crowd of ransomware
but for several unusual features — first among which is the fact
that it is written in Windows PowerShell.

< TITE.777 <7 USETS/FISeT/ DESKTOP7 Oy "UeT_TSTTLTTUTT

Your files were encrypted with a RSA2048-key.

To decrypt your files, go to http://5nxcgkSpxsc3efnz.onion.nu and follow the instructions.

If the site doesn't work, install the Tor browser and go to SnxcgkSpxsc3efnz.onion.

The only way to ever regain access to your files again is to buy the decrypter.

The price for the decrypter is doubled after 10 days.

If you have not made payment after 30 days, the private key for decryption is deleted - leaving your files irrevocably broken.,
Your ID# is Wk73Ghd5

Figure 9: Poshcoder ransom note.

Poshcoder, like Nemucod, makes empty threats of strong
asymmetric encryption [16]. In fact, its fictional strong
encryption is notably more heavy-duty than Nemucod’s, as its
various iterations claim to use RSA-2048 and even RSA-4096.
The actual encryption being delivered is symmetric: victim files
are encrypted using AES, not RSA. This is significant in itself,
as symmetric ciphers are open to a number of attacks to which
asymmetric ciphers are typically immune (all of which broadly
fall under the headline, ‘you had the decryption key at one
point, all that’s left is to find a surviving record of it"). Further
probing into Poshcoder’s encryption mechanism reveals the

following:

SPASSWORD = [System.Text.

Encoding] ::UTF8.GetString ([System.
Convert]::FromBase64String (R2hjaldc[..]))

$SSALT = [Text.Encoding]::UTF8.GetBytes ("SgfmPRgx[..])
[..]

SRijndaelManaged Var.Key = (new-Object Security.

Cryptography.Rfc2898DriveBytes $PASSWORD, $SALT,
5) .GetBytes (32)

[..]

SRijndalManaged Var.Padding="Zeroes"
SRijndaelManaged Var.Mode="CBC"

Rather than the RSA-4096 implementation it promises,
Poshcoder actually encrypts victim files with AES using a fixed
key. Eventually, the authors seem to have been alerted to the fact
that this is not the best practice (if only by lost revenue). In
response, they began routinely modifying the hard-coded key
included with the PowerShell script. This may not be the best
solution; when resorting to ransomware based on symmetric
encryption, an author is betting the success of their scheme on
the victim never recovering a record of their copy of the key. In

this case, such a copy might well be available to download
directly from the campaign’s C&C server.

As we mentioned, malware not only makes empty cryptographic
threats, but also empty cryptographic promises. Poshcoder, like
the rest of its breed, posits a deal to its victim: pay up, and you
can have your files back by the end of the hour. Unfortunately,
Poshcoder’s implementation of that functionality is not quite on
the mark, either. A look into the encryption mechanism yields
the following:

if (SbinReader.BaseStream.Length -1t 42871) {
SbinReader flen = SbinReader.BaseStream.Length
} else {
$binReader flen = 42871
}
[..1]
SbinWriter.Write (SmemStream Array, 0, SmemStream Array.
Length)

[..]

Where binWriter writes to the victim file and memStream holds
the AES-encryption of the first binReader_flen bytes.

First of all, we have here a short callback to the ‘voodoo
programming’ header, above. As the author of the Malware
Clipboard blog put it:

‘I would almost pay the ransom value just to know why the
author chose this arbitrary seeming value of 42,871 bytes.’

The more pressing issue here, though, is that this encryption logic
irreversibly breaks any files longer than that. When such a file is
given as input to this code, its first 42,871 bytes are encrypted;
due to the zero padding, the length of the resulting ciphertext is
not actually 42,871 bytes, but the closest larger multiple of 128
(AES block length) — which is 42,880. These 42,880 bytes
overwrite the first 42,880 bytes of the victim file, and as a result,
bytes 42871-42879 of the original file are lost forever.

For the missing nine letters in your interminable teenage diary,
this error is a mere nuisance. For the missing nine bytes in the
middle of the ZIP archive containing a backup of your financial
records for the last three years, it would probably be more of an
issue. The CRC32 checksum has failed; the archive is corrupted;
have a nice day.

TAKEAWAY & CONCLUSION

Many malware authors know that cryptographic tools are useful,
and will achieve things that there are no other ways to achieve.
All the same, evidence heavily suggests that most malware
authors view those tools as wondrous black boxes of black
magic, and figure they should be content if they can get the
encryption code to run at all.

As a result, the cryptographic facilities of malware can offer
pleasant surprises — if you know where to look. A solid forensic
investigation can sway the outcome of a nasty ransomware
incident, allow access to traffic that malicious actors would have
preferred to stay secret, and, generally, allow subversion of
whatever original functionality the cryptography was invoked
for in the first place.

One day, malware authors will collectively figure out how to use
encryption properly — and when they do, it’s going to be a

completely different playing field. Until that day, opportunities
will abound — and malware analysts and victims had better keep
their eyes open and their ears perked for these opportunities, as
long as they are still here.

REFERENCES

(1]

[2]

[3]

(4]

[5]

[6]

[7]

(8]

[91

[10]

[11]

[12]

[13]

Raymond, E. The Jargon File. 2003. http://catb.org/
jargon/html/V/voodoo-programming.html.

Finkle, J. Hackers steal U.S. government, corporate
data from PCs. Reuters, 2007. http://www.reuters.com/
article/us-internet-attack-idUSN1638118020070717.

Goodin, D. Source code leaked for pricey ZeuS
crimeware kit. The Register, 2007.
http://www.theregister.co.uk/2011/05/10/zeus_
crimeware_kit_leaked/.

Andriesse, D.; Bos, H. An analysis of the zeus peer-to-
peer protocol. Technical report, VU University
Amsterdam, 2013.

Caragea, R. Linux.Encoder.0 technical writeup: a story
about light-weight cryptanalysis and blind reverse
engineering. BitDefender, 2015.
http://labs.bitdefender.com/wp-content/plugins/
download-monitor/download.
php?id=1251711000741210279.pdf.

Caragea, R. Third Iteration of Linux Ransomware Still
not Ready for Prime-Time. BitDefender, 2016.
https://labs.bitdefender.com/2016/01/third-iteration-of-
linux-ransomware-still-not-ready-for-prime-time/.

Feynman, R. P. Cargo cult science. The Art and Science
of Analog Circuit Design, p. 55, 1998.

CryptoDefense, the CryptoLocker Imitator, Makes
Over 34,000 in One Month. Symantec, 2014.
http://www.symantec.com/connect/blogs/
cryptodefense-cryptolocker-imitator-makes-over-
34000-one-month.

CryptAcquireContext Function. Microsoft Corporation.
https://msdn.microsoft.com/en-us/library/windows/
desktop/aa379886(v=vs.85).aspx.

Wosar, F. CryptoDefense: The Story of Insecure
Ransomware Keys and Self-Serving Bloggers.
Emsisoft, 2014. http://blog.emsisoft.com/2014/04/04/
cryptodefense-the-story-of-insecure-ransomware-keys-
and-self-serving-bloggers/.

Trafimchuk, A. Decrypting the Petya Ransomware.
Check Point Software Technologies, 2016 .
http://blog.checkpoint.com/2016/04/11/decrypting-the-
petya-ransomware/.

Neagu, A. All You Need to Know About Nuclear
Exploit Kit. Heimdal Security, 2015.
https://heimdalsecurity.com/blog/nuclear-exploit-kit-
flash-player/.

Unraveling a Malware as a Service Infrastructure.
Check Point Software Technologies, 2016.

[14]

[15]

[16]

GREAT CRYPTO FAILURES

http://blog.checkpoint.com/wp-content/
uploads/2016/04/Inside-Nuclear-1-2.pdf.

Artenstein, N. How (and Why) We Defeated DirCrypt.
Check Point Software Technologies, 2014.
https://www.checkpoint.com/download/public-files/
TCC_WP_Hacking_The_Hacker.pdf.

Mason, J.; Watkins, K.; Eisner, J.; Stubblefield, A. A
natural language approach to automated cryptanalysis
of two-time pads. Proceedings of the 13th ACM
conference on computer and communications security,
2006, pp. 235-244.

A. (@CyberClues). How to Fail at Ransomware.
Malware Clipboard, 2015.
http://blog.malwareclipboard.com/2015/09/how-to-fail-
at-ransomware.html.

http://catb.org/jargon/html/V/voodoo-programming.html
http://www.reuters.com/article/us-internet-attack-idUSN1638118020070717
http://www.theregister.co.uk/2011/05/10/zeus_crimeware_kit_leaked/
http://labs.bitdefender.com/wp-content/plugins/download-monitor/download.php?id=1251711000741210279.pdf
https://labs.bitdefender.com/2016/01/third-iteration-of-linux-ransomware-still-not-ready-for-prime-time/
http://www.symantec.com/connect/blogs/cryptodefense-cryptolocker-imitator-makes-over-34000-one-month
https://msdn.microsoft.com/en-us/library/windows/desktop/aa379886(v=vs.85).aspx
http://blog.emsisoft.com/2014/04/04/cryptodefense-the-story-of-insecure-ransomware-keys-and-self-serving-bloggers/
http://blog.checkpoint.com/2016/04/11/decrypting-the-petya-ransomware/
https://heimdalsecurity.com/blog/nuclear-exploit-kit-flash-player/
http://blog.checkpoint.com/wp-content/uploads/2016/04/Inside-Nuclear-1-2.pdf
https://www.checkpoint.com/download/public-files/TCC_WP_Hacking_The_Hacker.pdf
http://blog.malwareclipboard.com/2015/09/how-to-fail-at-ransomware.html

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

