
ONE-CLICK FILELESS INFECTION ANAND & MENRIGE

1VIRUS BULLETIN CONFERENCE OCTOBER 2016

ONE-CLICK FILELESS INFECTION
Himanshu Anand & Chastine Menrige

Symantec, India

Email {himanshu_anand, chastine_menrige}@
symantec.com

ABSTRACT
Since last year, there has been growing interest in a technique
known as fi leless infection, where malware authors compromise
computers without writing any fi les to disk. This technique
allows the threat to evade detection by fi le-scanning software
while still remaining persistent.

This paper will explain the different fi leless infection methods,
as well as a new tactic that could allow attackers to perform
fi leless infection through a classic one-click fraud attack using
non-PE fi les.

Traditional malware is contained in a fi le on disk. A registry run
key links to this fi le in order to make the threat persistent. With
fi leless infection, the malware does not exist on the compromised
computer as a normal fi le. Instead, it is located in a subkey
within the computer’s registry as a script, such as Windows
PowerShell, VBScript, or JavaScript. The payload in the registry
is called every time Windows starts.

The one-click fi leless infection technique we’ve seen uses
JavaScript, though different scripts could also work. The
infection arrives on the computer through an .hta fi le, which
places the JavaScript payload into a registry subkey. The
JavaScript code can be triggered every time Windows starts by
calling the following:

rundll32.exe javascript:"\..\mshtml,RunHTMLApplication
";alert('payload');

The JavaScript code can read and decode encoded data from
another subkey. This data injects the payload into memory. Every
few minutes, the payload checks for its registry entry. If the entry
has been deleted, the payload recreates it so that the infection
remains persistent.

The fi rst widespread threat we saw using the fi leless infection
technique was Trojan.Poweliks [1] in 2014. Many other trojans

followed suit as they evolved, just two of which are
Trojan.Bedep [2] and Trojan.Kotver [3].

Our paper will explain and compare the most common ways in
which malware authors use fi leless infections today. We will
discuss areas where we expect these methods to be used in the
near future.

INTRODUCTION
Traditionally, AV products detect malicious fi les using strings or
code signatures found in the fi le. Malware has several ways to
avoid being detected, one of which is to put only the malicious
code in memory. One example is Korplug, where the infection
chain includes the decryption of an encrypted fi le, which is an
executable fi le loaded in memory [4]. It does this so that the code
is protected when an AV product scans the fi le. A fi leless type of
infection does this on a different level – there is no longer a fi le
written to disk for the AV product to scan. Even if the fi le is not
on the disk, the malware must still have a persistence
mechanism.

Early examples

The fi rst fi leless malware that caught the attention of researchers
is Trojan.Poweliks, discovered in 2014. Poweliks does not exist
as a fi le on a disk, but instead resides in the registry, which it
only uses as a persistence mechanism [5]. Poweliks uses a
special naming scheme to hide in the registry and has
consistently used CLSID hijacking as runtime load point in the
registry. Later on, Poweliks was also observed exploiting the
Microsoft Windows Remote Privilege Escalation Vulnerability
(CVE-2015-0016) [6] in order to take control of compromised
sites. At the same time, another fi leless malware, Trojan.Bedep,
was also using the same zero-day exploit. Bedep is an in-
memory-only downloader and perceived to have a similar
coding style to Poweliks. Trojans like Trojan.Bedep and
Trojan.Kotver have learned from Poweliks and adopted the
same technique.

How it works

Typically, fi leless malware arrives through exploit kits (EK)
when a user visits a compromised site. The Angler exploit kit
was the very fi rst EK observed to infect a host without writing

Figure 1: Infection chain of fi leless threat.

ONE-CLICK FILELESS INFECTION ANAND & MENRIGE

2 VIRUS BULLETIN CONFERENCE OCTOBER 2016

the malware on the drive [7]. The shellcode delivered by Angler
is responsible for injecting the fi leless malware into the process
running the exploited plug-in, such as iexplore.exe. Fileless
malware may also arrive through malicious fi le attachments or
malicious URL links found in spammed emails. These are
usually downloader malware, which are fi rst written over the
disk but eventually delete themselves after injecting the fi leless
malware into memory.

Once injected into the memory, the malware loads and encrypts
a binary component. This obfuscated copy is saved in the
registry and then another entry is created. This contains the
script as part of its autostart mechanism. This script can be
either VBScript, JavaScript or PowerShell script, and is
responsible for decrypting the binary component and loading it
into the memory.

The binary component is then launched and serves as a
watchdog – it monitors the relevant registry entries it created
and is also responsible for contacting the malicious command
and control (C&C) server. Back door capabilities of this
malware may include reinstalling registry entries, downloading
and executing fi les, and calling other commands. One of the
fi les it downloads and executes can install an ad-click module
into memory.

Notable malware that use this technique

Poweliks

From the fi le-based malware known as Wowliks, Trojan.Poweliks
evolved into a registry-based malware. One of its notable
behaviours is downloading a PowerShell application, hence the
name Poweliks. This malware uses PowerShell scripts to launch
and inject its DLL watchdog from the registry entry into the
DLLHost.exe process to retain its persistence mechanism. The
main payload of Poweliks is to deliver ad-fraud trojans and
ransomware to the infected user.

Bedep

Trojan.Bedep is believed to have a connection to Poweliks due
to similarities in coding style and the use of the same CVE-
2015-0016 exploit, but there is no conclusive evidence linking
the authors of the two pieces of malware. Bedep has been
observed to download and install Poweliks along with other
ad-fraud malware. Bedep comes in 32-bit and 64-bit variants
and uses Microsoft properties for its own fi le properties as part
of its disguise. The main purpose of this malware is to turn the
compromised computers into botnets.

Kotver

Prior to adopting Poweliks’s fi leless infection technique,
variants of the Kotver malware were residing only in the registry
to evade detection. However, it does not fully embrace the
fi leless infection technique. Like Poweliks, it downloads a
PowerShell application, but if no Internet connection is
available, it reverts to fi le-based infection and creates a copy of
itself on the disk. Kotver has been observed to deliver
ransomware and banking trojans.

FILELESS FORECAST
There has been growing interest in fi leless infections over the
last couple of years. Earlier, we explained the different infection
vectors used by different actors. Now, we will discuss a new
infection vector, which can potentially be used for performing
fi leless infections with non-PE fi les, using a classic one-click
fraud attack method [8].

First, we will discuss all the individual components one by one,
making it easy to understand one-click fi leless infection.

MSHTA.EXE

This program is an implementation of the WebBrowser control
that runs trusted HTML and scripts with a minimal user
interface (UI).

HTA

As technology improves and grows with time, some of it does
deprecate. In Windows OS, one such powerful technology has
existed since Windows NT (released in July 1993) and is still
present in Windows 10 (released in July 2015): HTML
Application (HTA).

HTA [9] is a Microsoft Windows program whose source code
consists of HTML, Dynamic HTML, and one or more scripting
languages supported by Internet Explorer (IE), such as
VBScript or JScript. The HTML is used to generate the user
interface, and the scripting language is used for the program
logic. An HTA executes without the constraints of the Internet
browser security model; in fact, it executes as a ‘fully trusted’
application. The usual fi le extension of an HTA is .hta.

All the current Windows OSes support HTA fi le execution. HTA
looks and behaves like an HTML fi le, but it has much higher
privileges than an HTML fi le. An HTA fi le requires mshta.exe,
which comes along with Internet Explorer. Mshta.exe executes
the HTA by instantiating the Internet Explorer rendering engine
(mshtml) as well as any required language engines (such as
vbscript.dll).

HTAs provide a way for users to wrap scripts up in a graphical
user interface (GUI), an interface replete with check boxes,
radio buttons, drop-down lists, and other Windows elements.

For our purposes, an HTA is nothing more than a way to provide
a GUI for scripts. As we have already noted, neither WSH nor
VBScript provides much in the way of GUI elements: no check
boxes, no list boxes, nothing. Internet Explorer, however, makes
use of all of these elements and more. Because an HTA
leverages IE, a user can take advantage of all these GUI
elements when writing system administration scripts.

How closely related are HTML fi les and HTAs? All a user has
to do is take any HTML fi le and change the fi le extension from
.htm (or .html) to .hta, and just like that, the fi le is now an HTA.

So why don’t users just use an HTML fi le?

The very simple answer is: security. There are a lot of security
restrictions implemented on IE, and for good reason: if users
visit a website they would probably prefer that the site does not

ONE-CLICK FILELESS INFECTION ANAND & MENRIGE

3VIRUS BULLETIN CONFERENCE OCTOBER 2016

use a client-side script that starts reconfi guring their settings or
rooting around in their fi le system. Consequently, many system
administration scripts – including those that use WMI or ADSI
– either will fail when run from IE or, at best, will display a
dialog box similar to the following:

Figure 3: A dialog box is displayed whenever users run scripts
from an HTML fi le.

Whenever users run scripts from an HTML fi le they are
presented with a dialog box like this. That might be okay, but it
is defi nitely not the best possible user experience.

HTAs, by contrast, are not bound by the same security
restrictions as IE, because HTAs run in a different process from
IE. HTAs run in the mshta.exe process rather than the
iexplore.exe process. Unlike HTML pages, HTAs can run
client-side scripts and they have access to the fi le system.
Among other things, this means that HTAs can run users’
system administration scripts, including those that use WMI and
ADSI. The users’ scripts will run just fi ne, and they will not
receive any warnings about items that might be unsafe.

Of course, this does not mean that HTAs somehow bypass
Windows security. For example, if one user does not have the

right to change another user’s password, then the former cannot
use a script to change the latter’s password. Placing that script
in an HTA will not make a difference – the user still will not be
able to change the other user’s password. HTAs also have some
security restrictions of their own.

The long and the short of it is that, although HTAs use Internet
Explorer and the IE object model, they run in a different process
from IE. Consequently, users can run scripts and perform other
tasks that are not allowed in IE.

More information about HTAs and security can be found on the
HTML Applications SDK page [11] on the Microsoft Developer
Network (MSDN).

Security considerations

When a regular HTML fi le is executed, the execution is
confi ned to the security model of the web browser – that is, it is
confi ned to communicating with the server, manipulating the
page’s object model (usually to validate forms and/or create
interesting visual effects) and reading or writing cookies.

On the other hand, an HTA runs as a fully trusted application
and therefore has more privileges than a normal HTML fi le; for
example, an HTA can create, edit and remove fi les
and registry entries. Although HTAs run in this ‘trusted’
environment, querying Active Directory can be subject to
Internet Explorer Zone logic and associated error messages.

One-click fi leless infection

After analysing fi le infections and their infection vectors, we
discovered that infections are also possible if attackers use
non-PE fi les and a very well-known infection vector: one-click
fraud.

One-click fraud is not new; it has existed for over a decade and
has been seen affecting mostly Asian countries, most notably
Japan. Typically, one-click fraudsters attempt to trick users into
subscribing to bogus adult video services with a single click,
although variants requiring two, three, and four clicks – even
zero clicks – have also been observed [12]. One-click fraud
exhibits ransomware-like behaviour, in that it attempts to lock
the user’s screen and create non-terminating or recurring pop-up
windows, which ask the user to register, subscribe, or pay a
certain amount to remove them.

We found that malicious actors could potentially mix fi leless
infection and one-click fraud to create one-click fi leless
infection. In a nutshell:

Fileless infection + one-click fraud = One-click fi leless infection

In-memory infection

We used an HTA fi le to create an ActiveX object that could
inject the JS payload into a Run registry entry. We found that the
same can be achieved using PowerShell and WSCRIPT (VBS).

Proof of concept

The code shown in Figure 5 is for the HTA fi le, which could be
hosted on an attacker’s controlled server. In an infection

Figure 2. General IE architecture and applications [10].

ONE-CLICK FILELESS INFECTION ANAND & MENRIGE

4 VIRUS BULLETIN CONFERENCE OCTOBER 2016

Figure 4: How the attack works.

/****************************POC***/

<html>
<head>
<title>RegTest</title>
<script language="JavaScript">
function writeInRegistry(sRegEntry, sRegValue)
{
 var regpath = "HKEY_LOCAL_MACHINE\\SOFTWARE\\Microsoft\\Windows\\CurrentVersion\\Run\\" + sRegEntry;
 var oWSS = new ActiveXObject("WScript.Shell");
 oWSS.RegWrite(regpath, sRegValue, "REG_SZ");
}

function readFromRegistry(sRegEntry)
{
 var regpath = "HKEY_LOCAL_MACHINE\\SOFTWARE\\Microsoft\\Windows\\CurrentVersion\\Run\\" +
sRegEntry; /*Payload injected in Run registry entry*/
 var oWSS = new ActiveXObject("WScript.Shell"); /*WASCRIPT ActiveX object created which is used to inject the
Malicous JS in registry*/
 return oWSS.RegRead(regpath);
}

function tst()
{
 writeInRegistry("malware", "rundll32.exe javascript:\"\\..\\mshtml,RunHTMLApplication \";alert('payload'); ");
/*Payload is the JS payload which does the real malicious stuff and it got watchdog, for keeping an eye over the
registry entry which makes the infection persistent*/
 alert(readFromRegistry("malware"));
}
</script></head>
<body>

Click here to run test: <input type="button" value="Run" onclick="tst()"
</body>
</html>

/***************************POC end***/

Figure 5: Proof of concept.

ONE-CLICK FILELESS INFECTION ANAND & MENRIGE

5VIRUS BULLETIN CONFERENCE OCTOBER 2016

scenario, the user is enticed to visit the website (using social
engineering or a watering hole attack), and then asked to click
Run/Execute. Once executed, the fi le creates a WScript ActiveX
object, which then creates the Run registry entry and injects it
with a JS alert (for POC) which is executed using rundll32.

For our purposes, we picked the case of Poweliks, specifi cally
because of how it extracts the JS from the Run registry entry. It
is injected into the Run registry entry to make the infection
persistent. Once the user restarts the computer, it reinjects itself,
as in-memory infection will disappear once the computer is
restarted.

For our POC, we used the Alert API, although malicious actors
may choose differently. As in previous cases of fi leless
infection, we found that it features a watchdog module, which
keeps an eye over the registry entry. It also recreates the registry
entry if the user deletes it.

For simplicity, we have only shown how to execute the code.
The same thing can be achieved using PowerShell or CSCRIPT.

This attack may affect all Windows versions from Windows 95
through to Windows 10. All versions have IE preinstalled,
which, as previously discussed, comes with WSCRIPT, which is
the only required component to perform this attack.

Variants

Other variants of similar attacks can be made using the
following trusted applications:

• PowerShell [13]

• CSCRIPT [14]

• WSCRIPT [15]

Prevention and mitigation

Symantec recommends users adhere to the following best
practices to prevent one-click fi leless infection:

• Never treat HTA fi les as HTML fi les

• Dynamically detect orphan registry entries that call
PowerShell, WSCRIPT, CSCRIPT, cmd, RUNDLL32, or
regserve32

• Perform manual removal where necessary (steps are
outlined below).

Manual removal

1. Download and execute Microsoft’s Process Explorer.

2. Restart in Safe Mode.

3. Select the mother process (into which the malware is
injecting) and terminate it (kill Process Tree).

4. Open Registry Editor (Run -> regedit.exe).

5. In the left panel, go to: HKEY_LOCAL_MACHINE\
SOFTWARE\Microsoft\Windows\CurrentVersion\Run\

6. Clean registry entries.

7. Close Registry Editor.

AV solutions

Anti-virus products have the following approaches to address
fi leless infections:

1. Memory scanning

2. Registry scanning

3. Network scanning.

REFERENCES

[1] Trojan.Poweliks. https://www.symantec.com/security_
response/writeup.jsp?docid=2014-080408-5614-99.

[2] Trojan.Bedep. https://www.symantec.com/security_
response/writeup.jsp?docid=2015-020903-0718-99.

[3] Trojan.Kotver. https://www.symantec.com/security_
response/writeup.jsp?docid=2015-082817-0932-99.

[4] Camba, A. Unplugging Plugx Capabilities. Trend
Micro Malware Blog. http://blog.trendmicro.com/
trendlabs-security-intelligence/unplugging-plugx-
capabilities.

[5] O’Murchu, L.; Gutierrez, F. The evolution of the
fi leless click-fraud malware Poweliks. Symantec
Connect Blog. http://www.symantec.com/content/en/
us/enterprise/media/security_response/whitepapers/
evolution-of-poweliks.pdf.

[6] Microsoft Windows Remote Privilege Escalation
Vulnerability (CVE-2015-0016).
https://www.symantec.com/security_response/
vulnerability.jsp?bid=71965.

[7] Kafeine. Angler EK: now capable of “fi leless”
infection. Malware Don’t Need Coffee Blog.
http://malware.dontneedcoffee.com/2014/08/angler-ek-
now-capable-of-fi leless.html.

[8] Anand, H. One-click fraudsters extend reach by
learning Chinese. Symantec Connect Blog.
http://www.symantec.com/connect/blogs/one-click-
fraudsters-extend-reach-learning-chinese.

[9] Extreme Makeover: Wrap Your Scripts Up in a GUI
Interface. Microsoft Technet. https://technet.microsoft.
com/en-us/library/ee692768.aspx.

[10] Recreated from the Microsoft TechNet (2013) gallery
– IE Architecture. https://gallery.technet.microsoft.com/
IE-Architecture-3bc7c3fd/fi le/78635/1/IE%20
Architecture.png.

[11] HTML Applications SDK. https://msdn.microsoft.com/
en-us/library/ms536473(vs.85).aspx.

[12] Hamada, J. The rise of Japanese zero-click fraud.
Symantec Connect Blog. http://www.symantec.com/
connect/blogs/rise-japanese-zero-click-fraud.

[13] It’s a Wrap! Windows PowerShell 1.0 Released!
Windows PowerShell Blog. https://blogs.msdn.
microsoft.com/powershell/2006/11/14/its-a-wrap-
windows-powershell-1-0-released.

https://www.symantec.com/security_response/writeup.jsp?docid=2014-080408-5614-99
https://www.symantec.com/security_response/writeup.jsp?docid=2015-020903-0718-99
https://www.symantec.com/security_response/writeup.jsp?docid=2015-082817-0932-99
http://blog.trendmicro.com/trendlabs-security-intelligence/unplugging-plugx-capabilities
http://www.symantec.com/content/en/us/enterprise/media/security_response/whitepapers/evolution-of-poweliks.pdf
https://www.symantec.com/security_response/vulnerability.jsp?bid=71965
http://malware.dontneedcoffee.com/2014/08/angler-ek-now-capable-of-fileless.html
http://www.symantec.com/connect/blogs/one-click-fraudsters-extend-reach-learning-chinese
https://technet.microsoft.com/en-us/library/ee692768.aspx
https://gallery.technet.microsoft.com/IE-Architecture-3bc7c3fd/file/78635/1/IE%20Architecture.png
https://msdn.microsoft.com/en-us/library/ms536473(vs.85).aspx
http://www.symantec.com/connect/blogs/rise-japanese-zero-click-fraud
https://blogs.msdn.microsoft.com/powershell/2006/11/14/its-a-wrap-windows-powershell-1-0-released

ONE-CLICK FILELESS INFECTION ANAND & MENRIGE

6 VIRUS BULLETIN CONFERENCE OCTOBER 2016

[14] Using the command-based script host (CScript.exe).
Microsoft Technet. https://technet.microsoft.com/en-us/
library/bb490887.aspx.

[15] WScript Object. Microsoft Developer Network.
https://msdn.microsoft.com/en-us/library/
at5ydy31(v=vs.84).aspx.

https://technet.microsoft.com/en-us/library/bb490887.aspx
https://msdn.microsoft.com/en-us/library/at5ydy31(v=vs.84).aspx

