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ABSTRACT
Computer security is a serious issue which attracts the interest 
of all nations. Malicious codes are implemented to stay hidden 
both during the infection process and during the operation of the 
code, preventing their removal and the analysis of the code. The 
programs used today to detect malicious code, such as most 
anti-virus software and firewalls, are problematic as a version of 
the malicious program needs to have been analysed prior to the 
detection itself.

The reason the analysis process is necessary is that these 
security programs work using patterns that have been extracted 
from the malware, called signatures. Furthermore, at least one 
computer system needs to be infected in order for the code to be 
analysed. These kinds of software defences work well for 
detecting known malware, but they are no defence against new 
threat variants. The industry’s approach still relies heavily on 
the well-known technique of signature matching.

Software analysis is a critical point in dealing with malware, 
since most samples employ some sort of packing or obfuscation 
techniques in order to thwart analysis. It is also an area of 
economic concern in protecting digital assets from intellectual 
property theft.

Analysis tools help analysts identify vulnerabilities and issues 
before they can cause harm downstream. Understanding how 
software and hardware can be secured using tools and techniques 
beyond the standard debuggers and unit tests ensures greater 
security and integrity. This paper provides an introduction to 
some practical applications of SMT solvers in IT security, 
investigating the theoretical limitations and practical solutions, 
focusing on their use as a tool for binary static analysis.

1. INTRODUCTION
Nowadays, most malware is programmed to stay hidden during 
infection and operation, preventing its removal and the analysis 
of its code. The current solutions used to detect malicious code, 
such as anti-virus software and firewalls, are problematic as 
prior information about the malicious code must be available in 
order for those programs to detect the code on a system. This is 
because these solutions work using patterns extracted from the 
malware called signatures. Therefore, at least one computer 
system needs to have been infected in order for the code to be 
analysed.

Static analysis of a piece of malicious code is a very demanding 
process. Usually, it’s done by a person (a security analyst) who 
will stare at one binary code for hours, searching for patterns – 
the signatures. Security analysts need tools to help them analyse 
new threats: since malware is distributed in compiled form, a 

disassembler is required. The process of analysing compiled 
code is the reverse process of software engineering and 
therefore called reverse engineering.

This paper will first introduce constraint programming to provide  
a background to how solvers work, after which it will describe the 
malware detection problem as a satisfiability problem, and finally 
present an algorithm to analyse malware using logic.

2. CONSTRAINT PROGRAMMING
In this section, Constraint Programming (CP) and Constraint 
Satisfaction Problems (CSPs) will be explained and an overview 
of the most common solving techniques will be provided. 
According to Eugene C. Freuder in [1]:

‘CP represents one of the closest approaches computer 
science has yet made to the Holy Grail of programming: the 
user states the problem, the computer solves it.’

CP is a declarative programming paradigm which consists of the 
formulation of a solution to a problem as a CSP [2]. In the CSP 
a number of variables are introduced, with well-specified 
domains and which describe the state of the system. A set of 
relations, called constraints, is then imposed on the variables 
that make up the problem. These constraints are understood to 
have to hold true for a particular set of bindings for the 
variables, resulting in a solution to the CSP.

Constraints have some interesting properties when it is desirable 
to work in different environments, such as:

•	 Additivity: The order of the constraints doesn’t matter, as 
all that matters is that all constraints are met, i.e. the 
conjunction of all declared constraints.

•	 Domains: Typically, constraints are used over specific 
domains. Finite domains are one of most successful 
domains of CP.

2.1 Constraint satisfaction problems

Constraint programming is devoted to solving constraint 
satisfaction problems. A CSP, P, is defined as a tuple (X, D, C), 
where [3]:
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The size of vars(c
i
) is called the arity of the constraint c

i
. 

Constraints that have an arity of 2 are called binary. Constraints 
whose arity is greater than 2 are called non-binary. Every CSP 
can be converted into an equivalent binary CSP, where all 
constraints are binary [4]. The convenience of binary CSPs is that 
they can be represented by a constraint graph. In such graphs the 
nodes are labelled with the variable identifiers and the edges 
connect pairs of variables inside some of the constraint domains.

Each tuple τ ∈ rel(c
i
) is an ordered list of values (a

1
,··· ,a

k
) such 

that a
j 
∈ D

in
(x

j
),j = 1,··· ,k. A tuple is valid if all the values in the 

tuple are present in the domains of the corresponding variables. 
That means:

A solution to a CSP is an assignment (or a tuple) where 
every constraint is satisfied.

CSPs are also combinatorial problems that can be solved by 
search. Unfortunately, systematic search – such as ‘generate and 
test’ or ‘backtracking’ – is not usually feasible in practice. 
Therefore, one of the main research topics in the area of 
constraint satisfaction consists of finding efficient 
constraint‑solving algorithms, like ‘consistency check’.

2.2 Consistency check

The process which verifies whether or not a given tuple is 
allowed by constraint c

i 
is called a consistency check. 

Consistency check techniques were introduced to improve the 
efficiency of search algorithms [5]. A constraint can be defined 
either extensionally, by the set of allowed (or disallowed) tuples, 
or intensionally, by a predicate or arithmetic function.

Consistency check techniques can rule out many inconsistent 
tuples at a very early stage. Customarily, this is done by 
removing values from a variable’s domain. Once the domain of 
the variable becomes empty, we can ensure that the CSP has no 
solution, as the consistency of the algorithm fails to achieve 
consistency. However, the procedure is not complete, because 
even if the algorithm achieves consistency, it does not 
necessarily mean that the CSP has a solution.

Besides traditional search, there are a number of alternative 
methods for solving CSPs, each with varying levels of success. 
Among them, Satisfiability (SAT) and Satisfiability Modulo 
Theory (SMT) are two of the most promising for use in malware 
detection and binary analysis.

2.3 Satisfiablity solving

Satisfiability (SAT) basically consists of encoding CSPs into 
Boolean satisfiability problems. A Boolean satisfiability 
problem is the problem of determining whether the variables of 
a given Boolean formula can be assigned in such a way as to 
make the formula evaluate to true. This means that SAT can be 
defined as a propositional formula.

A propositional formula is a formula composed from the 
propositional operators ¬,∨,∧,−→,←→ and a finite set, V, of 
Boolean valued variables.

An assignment or valuation is a map v : V → {false,true}. This 
assignment v is lifted to propositional formulas by defining the 
following:

•	 v(¬θ) = ¬v(θ)

•	 v(θ ∨ φ) = v(θ) ∨ v(φ)

•	 v(θ ∧ φ) = v(θ) ∧ v(φ)

•	 and so on.

A propositional formula θ is called satisfiable (SAT) if there 
exists a v such as v(θ) = true. Then v is called a satisfying 
assignment.

SAT was the first known example of an NP-complete problem.1 
Nevertheless, thanks to better implementation techniques and 
improvement of concepts, such as conflict-driven lemma 
learning, these solvers are able to reduce the size of the search 
space significantly.

2.4. Satisfiability Modulo Theory

Satisfiability Modulo Theory (SMT), as the name implies, 
consists of encoding CSPs into SAT modulo theory problems. 
An SMT formula is a generalization of a Boolean formula, 
where some variables are replaced by predicates with predefined 
interpretations like simple arithmetic.

While the language of SAT solvers is Boolean logic, the 
language of SMT solvers is first-order logic. This language 
includes the Boolean operations using more complicated 
expressions involving constant, function, and predicate symbols 
instead of propositional variables. Expressions in first-order 
logic are made up of sequences of symbols. Symbols are 
divided into logical symbols and non-logical symbols or 
parameters.

The theory reasoning in an SMT solver is done with a theory 
solver. Given a Σ-theory T, a theory solver for T takes as input a 
set of Σ-literals and determines whether the set is satisfiable or 
unsatisfiable.

For example, a formula contains a clause such as a ∨ b ∨ (x + 5) 
≤ y, where a and b are Boolean variables and x and y are integer 
variables. Such linear integer inequalities are evaluated 
according to the background theory [6].

A theory is, at first, a set of first-order formulas closed under 
logical consequence. That said, given a theory τ, τ is called 
decidable if there is an effective method for determining 
whether arbitrary formulas are included in τ.

A formula φ is called τ-satisfiable or τ-consistent if τ ∪{φ} is 
satisfiable in the first-order sense. Otherwise, it is called 
τ-unsatisfiable or τ-inconsistent.

Accordingly, the SMT problem for a theory τ is the problem of 
determining, given a formula φ, whether φ is τ-satisfiable.

2.5 Examples of constraint satisfaction problems

CSPs are most well researched in the artificial intelligence field, 
however they are not restricted to it. A well-known real-world 
constraint satisfaction problem is a simple multi-lingual 
translator tool, which combines two different problems: 

1 A decision problem is NP-complete when it is in both NP and NP-hard. 
The set of NP-complete problems is often denoted by NP-C or NPC. 
The abbreviation NP refers to ‘non-deterministic polynomial time’.
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word-sense disambiguation – an open problem of natural 
language processing and ontology – and the machine reading 
comprehension [7].

In addition, almost all logic puzzles, such as the Rubik’s Cube 
and Sudoku puzzles, can be expressed as CSPs, and many 
solutions using SMT solvers can be found online. For those 
interested in reading more, [8] is a deeper analysis of Sudoku as 
a CSP.

Theoretical problems like Vertex-Cover and Graph 
KColorability (Chromatic Number) are also examples of more 
complex theoretical CSPs (where a set of start conditions exists 
in NP-Complete scope) [9].

2.6 Solving CSPs with SMT solvers

Let’s consider the following systems of equations:

	

3x + 5y + z = 1

7x - 2y + 4z = -1

-6x + 3y + 2z = 0

we can write in SMT2 language:
(declare-const x Real)

(declare-const y Real)

(declare-const z Real)

(assert (=(+(+ (* 3 x ) (* 5 y ) ) z ) 1))

(assert (=(+(+ (* 7 x) (* 2 y) ) (* 4 z)) (- 1)))

(assert (=(+(+ (* (- 6) x ) (* 3 y ) ) 2z ) 0))

(check-sat)

(get-model)

and this will output:

sat

(model 

	 (define-fun z () Real

		  (- (/ 65.0 76.0)))

	 (define-fun y () Real

		  (/ 15.0 76.0))

	 (define-fun x () Real

		  (/ 11.0 38.0))

)

These are both solutions for our systems of equation.2

3. MALWARE
Numerous definitions have been offered to describe malware, the 
name of which derives from ‘malicious software’. For the 
purposes of this paper, the following description will be adopted:

Malware is a piece of software with unwanted functionality.

The variety of known and unknown malware is part of the 
reason why detecting it is a difficult task. Categorizing 
malicious code has increasingly become more complex as 
newer versions appear to be combinations of those that belong 
to existing malware families [10].

2 For more examples, see https://yurichev.com/writings/SAT_SMT_by_
example.pdf

A technique very commonly used in malware is binary 
obfuscation. Obfuscation is a technique that makes binary and 
textual data unreadable. Its implementation can be as simple as 
a few bit manipulations, and as advanced as cryptographic 
standards [11].

3.1 Malware detection

Absolute protection against malware can only be obtained by 
absolute isolationism [12]. However, this is an unacceptable 
solution nowadays, when everything is connected.

Software tools used to protect against malware infections 
currently include intrusion detection systems (IDSs) and 
anti-virus software (AV). IDSs are used to detect intrusions of 
all kinds, not just malware. They often compare the pattern of a 
program flow against a database of patterns of known attacks. 
This method is called signature-based detection.

Signature-based AV is a very important piece of modern AV 
multi-layer protection strategy. In the context of anti-virus, 
‘signature-based’ means that files are marked or identified as 
either benign or malicious by comparing them against a 
database of binary patterns of known malware. The greatest 
problem with this method is that new malware needs to be 
discovered and analysed prior the effective detection.

Another method is anomaly-based detection, where intrusions 
are detected by identifying deviations from the expected 
behaviour of the program at runtime.

Naturally, it is desirable that all computer systems have the ability 
to make decisions about which programs are allowed to execute 
certain functions or call certain system information based on the 
actions each program will take. Unfortunately, any policy based 
on such requirements is almost untenable because trying to 
determine whether a program will perform malicious actions is a 
generally undecidable problem, also known as the ‘halting 
problem’, which will be described in the following section.

3.2 Turing machines and the halting problem

Rice’s theorem postulates that, whatever property of programs 
we’re interested in, one cannot write a program that determines 
for each program whether it satisfies that property. We can 
reduce Rice’s theorem to the halting problem.

The halting problem postulates that we cannot know if the 
computation of a program on some input will ever terminate. 
The importance of the undecidability of the halting problem lies 
in its generality.

First of all, a device that is capable of computing the solution to 
any problem that can be computed, provided that the device is 
given enough storage and time for the computation to finish, is 
defined as a universal computing machine – also known as a 
Turing machine.

This device is called a Turing machine because Alan Turing, 
English logician, was the first to come up with the idea of such 
a device in 1936. Turing also conjectured that his definition of 
computable was identical to the ‘natural’ definition. In other 
words, a problem that cannot be solved by a Turing machine 
cannot be solved in any systematic manner. 
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The simplest class of problems to consider are binary problems, 
i.e. given an input, the output can be ‘yes’ or ‘no’. These 
problems are known as decision problems and they are formally 
defined as:

Given an input alphabet Σ and a subset A of Σ*, where Σ* is a 
set of finite strings formed by concatenating elements of Σ 
along with the start string ‘ ’, determine whether x ∈ Σ* is in A.

The set L(M) = {x ∈ Σ* : accepts x} is called the language of the 
Turing machine M that will accept x, whether x ∈ A. The 
language A is recognizable if there is a Turing machine M with 
L(M) = A. A is co-recognizable if Σ* − A is recognizable. And if 
a language is recognizable and corecognizable, then it is 
decidable.

To determine that a given program Φ is malware, it needs to be 
shown that at least one undesirable function exists in the code. 
That can be described as a binary problem, as the answer would 
be ‘yes, the program is malicious’ or ‘no, the program is clean’.

The question here is whether the machine that computes the 
answer will ever find an answer or will keep computing forever.

Since we are interested in finding out-of-bounds system calls, 
Rice’s theorem says that there is no program that will give a 
correct answer all the time. The program will sometimes fail or 
never stop computing.

4. BINARY ANALYSIS
Today, the analysis of a program’s behaviour is often a tedious 
manual process: when a new piece of potentially malicious code 
is found, the analyst runs the program in a virtual machine and 
observes it. If nothing happens in the first moment, one could 
assume that a trigger condition exists and may not have been 
met. If suspicions remain, disassembly of the program will be 
performed and a mental model of the program’s execution can 
be built. Furthermore, the analyst will try to guess what kind of 
input or system setup could trigger the malicious code. The 
process will be repeated until the analyst runs out of patience, 
time, or is lucky enough to uncover the trigger-based behaviour. 
In this paper, system calls are defined as iterations between a 
new piece of software and the base system.

4.1 Anomaly-based detection
In behaviour-based malware detection the most important input 
is the knowledge of a malicious behaviour. In anomaly-based 
detection, the inverse of this knowledge is used in a learning 
phase. This enables the detector to identify anomalous 
behaviour by its deviation from normal behaviour. Once the 
detector has obtained the knowledge, one can employ its 
detection technique.

4.2 Behavioural analysis using multiple 
execution paths
The standard program behaviour is given by sequences of 
system calls. The execution traces of these system calls are 
collected and the program interactions can be monitored.

The problem with dynamic analysis tools is that only a single 
path is observed. However, it is possible to trigger certain 

malicious calls under specific circumstances, e.g. if the program 
is running in a sandbox, the clock tick is not the same as it 
would be in a fully operational system and the malicious code 
won’t be triggered after a clock check. Another example of 
limitation from the standard program behaviour analysis would 
be a connection check:

Example of sending a ping:

•	 Call the socket function with a parameter IPX then call the 
sendto function with the ICMOECHO argument

•	 Call the IcmpSendEcho function

There is more than one way to send a ping using system calls. 
To solve this limitation, an abstraction of it is needed. The 
detection system should allow the exploration of multiple 
execution paths and the identification of malicious calls under 
special triggers.

Most of the existing systems for automated malware analysis 
only allow the tracking of the system calls that are invoked from 
a single path, like ‘sandboxes’. Unfortunately, this is just a small 
part of the complete program behaviour. To obtain different 
executions paths for the same program, some branching points 
are chosen on the basis of system calls made previously. This 
will provide a better overview of the code’s actions and a set of 
trigger conditions.

5. MALWARE SCANNING AS A CONSTRAINT 
SATISFACTION PROBLEM
Before starting to design a solution, it is important to notice how 
triggers are implemented in high level languages. They are often 
implemented as conditional jumps depending on inputs from 
trigger types such as time, return values of network requests, 
keyboard layouts, and so on.

Malicious threats are triggered if the conditional jump evaluates 
to the designated direction, e.g. April Fool’s Day Malware that 
is only launched on 1 April.

The trigger condition is the set of conditions which the trigger 
input needs to satisfy in order for the code execution to go down 
the path to the malicious code. The values of the trigger input 
set satisfying the trigger condition are called trigger values.

The system calls symbolic execution can be used to 
automatically explore the trigger-based behaviour in the 
program based on the given trigger types.

5.1 Binary static analysis
Static analysis is a commonly used tool in malware detection. 
For most object-oriented codes, static analysis works directly on 
the binary code and performs various analyses, such as 
reconstruction of the class hierarchy and method calls, and 
(most importantly for dynamic detection) extracts the control 
flow and data flow information.

The control flow and the semantics of the program need to be 
developed in order subsequently to choose the parts of the 
binary that should be used in the detection. For that, the binary 
needs to be parsed to a control flow graph. After that, the 
branching points of the control flow graph are chosen based on 
the return value of the former requested system calls.
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These branching points in the program execution are chosen in 
such a way that all the alternatives are interesting for being 
dependent on the system call returning value.

5.2 Symbolic execution

The symbolic execution of the program generates a structural 
coverage of its control flow based on constraint analysis of the 
multiple paths. This means that it is possible to determine at 
time t a set of conditions necessary to take the branch b or not. 
Every variable on our graph is represented as a symbolic value 
and each branch is now represented as a constraint solution set. 
This way, the symbolic execution with the aid of constraint 
solvers allows the program to go from an entry point EP to a 
end point END.

In particular, the system calls found in code – the trigger inputs 
– are represented symbolically and the instructions that depend 
on these system calls return values which also operate on 
symbolic values and therefore are executed symbolically.

The key idea behind a classical symbolic execution is to use 
symbolic values as input values instead of actual data, 
representing the values of program variables as symbolic 
expressions, so that the outputs computed are expressed as 
functions of the symbolic inputs.

During the symbolic execution, a symbolic state is maintained, 
mapping the program variables to symbolic expressions. 
Furthermore, a constraint symbolic path SP is now dislocked as 
a first order free formula over symbolic expressions. The SP 
aggregates constraints on the inputs that trigger the execution to 
follow the associated path. At every conditional statement, i.e. if 
(condition) branch

1 
else branch

2
, SP is updated with conditions 

on the inputs to choose between alternative paths on these 
branches. With the assistance of a constraint solver, a new path 
condition SP* is created and initialized to SP ∧ ¬φ(condition) 
and SP is updated to SP∧φ(condition), where φ(condition) 
denotes the symbolic predicate obtained by evaluating condition 
in symbolic state φ. If SP* becomes unsatisfiable, symbolic 
execution terminates along the corresponding path.

Whenever symbolic execution along a path terminates – with or 
without error – the current SP is solved and the solution forms 
the acceptable input set. This shows that, if the program is 
executed on these concrete inputs, it will take the same path as 
the symbolic execution did and terminate.

5.3 Generalized symbolic execution

For code containing loops or recursion that may result in an 
infinite number of paths, generalized symbolic execution is 
used. Generalized symbolic execution will extend the classical 
symbolic execution with the ability of handling multithreading 
and program fragments. The input of multithreading fragments 
of a program are then recursive data structures.

In the generalized symbolic execution the input is handled in 
recursive data structures by using lazy initialization, starting the 
execution of the method on inputs with uninitialized fields and 
non-deterministically initialized fields when they are first 
accessed during the function’s symbolic execution.

5.4 Limitations

In many cases, the satisfiability solver may not be able to return 
an answer to the constraint problem within a reasonable time. 
Because of this, it is important in the implementation to set a 
timeout for the analysis of single paths. It is also important to 
explore as many different branches and paths as possible.

An additional technical limitation for automatically analysing a 
piece of malware is that the code is often packed or obfuscated. 
Code packing is a technique where binary code is statically 
compressed, combined with decompression code into a single 
executable, and only decompressed at runtime. This way the 
malicious code is readable just after unpacking. Often, the 
decompressed code is available in the memory only during 
runtime. Sometimes, however, the code can be self‑modifying 
and the decompressed information may be written directly into 
the program file.

In this case, the unpacking algorithm overwrites the program 
code itself, dynamically generating the malicious code in a 
different address where no data was stored before.

As briefly mentioned before, code obfuscation is a technique 
used to make static analysis difficult, where so-called ‘garbage 
code’ is added to pollute the overview of the control flow graph. 
It is one of most widely used techniques for hiding malicious 
code inside clean programs.

In cases where code packing or code obfuscation are applied, it 
is difficult, if not impossible, to disassemble the binary code and 
it is necessary to pre-process the sample.

6. STRUCTURE OF THE ALGORITHM
By disassembling the binary code, the instructions of the 
program can be parsed into a control flow graph. In order to 
generate this graph it is necessary to use static analysis 
techniques. Static analysis can be divided in two parts: 
intra‑procedural and inter-procedural.

6.1 Intra-procedural binary analysis

Intra-procedural analysis is the analysis performed on a single 
function, independent from other methods in the program. The 
function is represented by instructions grouped into static basic 
blocks.

A static basic block is a sequence of instructions that has 
exactly one entry point and one exit point. These basic blocks 
are the representation of the most simple unit of the code and 
they describe a linear flow of instructions. A non-linear control 
flow appears only at the end of a basic block. Each instruction 
that is a target of a branch instruction defines a new basic block. 
In general, every program can be uniquely partitioned into a set 
of non-overlapping static basic blocks. Figure 1 shows an 
example of three basic blocks showing a conditional jump.

Whenever it is possible to remove an instruction inside a basic 
block, it is possible to remove the complete block [13]. 

The execution path between two basic blocks is parsed in the 
control flow graph, modelling the relationship and dependence 
between these two basic blocks. Using the control flow graph 
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and the data-flow analysis, one can determine how values are 
passed from one block to the next as well as the conditional 
branch statements, where the execution flow may diverge 
depending on the value of a variable.

As a certain execution path is desired (the goal is to reach the 
malicious code) the values for these variables must be 
constrained. These constraints can then be extracted from the 
branch instructions.

6.2 Inter-procedural analysis

Inter-procedural analysis is the analysis performed on the entire 
application as a whole, considering the dependencies and 
data-flow relationships between different functions. The result 
of this kind of analysis is a graph, where the values and 
functions that are used to invoke the next function are modelled.

As the functions are inside basic blocks, one can use these 
blocks to derive a graph with a possible control flow 
representation of the processor, where each node is a basic 
block and the edges represent the control flow among these 
blocks. Each control flow edge models a dependency between 
two basic blocks. This graph is called an application’s call 
graph.

The precision of the graph and the performance of the analysis 
depend on the options used to generate the control flow edges. 
The context sensitivity of the graph is an important parameter 
to consider for the matter of malware detection. The 
configuration of the precision parameters determines the 
representation of system calls on the graph. High context 
sensitivity enables cross references when system calls are 
invoked in multiple locations. The nodes can then be 
differentiated by the invoking function, the parameters used for 
the invocation, or the receiving function [14].

s t a r t ( ) { foo (1 ,10); foo (3 ,20); }

bar (){ foo (1 ,10); }

foo (x , y){ . .	 some	 code	 . .

}

Figure 2: Example of context sensitivity for a simple program.

Context sensitivity may also depend on the functions or calls 
themselves. This means that increasing context sensitivity 
results in a greater number of system call clones among the 
graph nodes. Accordingly, it also directly increases the precision 
of analysis. However, the graph construction may become 
exponentially resource-intensive for the processor.

In most cases, static analysis is a balance between desired or 
needed precision and availability of resources.

6.3 Limitations on creating a control flow graph
The analysis of binary code is a non-trivial task. Disassembling 
and interpreting binary files is complicated for a lot of reasons. 
One of the most recurrent problems is the ‘Code Discovery 
Problem’ [15]. In many Instruction Set Architectures (ISAs), 
binary data and executable instructions are saved in the same 
way. If the analyst is not able to distinguish between instructions 
and data, the whole process might be invalidated as some 
functions may not be discovered or data may be misinterpreted.

Another complication with control flow detection arises if indirect 
control flow instructions are used inside the binary code. 
Commonly, control flows are determined by the jump tables that 
that are generated by the compiler. Typically, the targets of these 
jumps are easy to compute. Using expression substitution, it is 
possible to compute the jumps with high precision, allowing the 
expression to be checked against branch normal forms. Figure 3 
shows an example of an application’s control flow graph with 
high context sensitivity; Figure 4 shows an example of a control 
flow graph with multiple executable paths for a simple program.

Other sources of indirect control flow are method pointers 
which are available in most high-level languages, e.g. to 
implement inheritance or to allow dynamic program behaviour. 
The targets of this kind of indirect control flow are very hard to 
compute and until now, no approach could be found which can 
guarantee the precise detection of all targets.

Figure 1: Example of three basic blocks (IDA Pro Screenshot) 
showing a conditional jump.
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6.4 Mixed concrete and symbolic execution

The instructions in a basic block do not depend on trigger input to 
operate on concrete values and can be evaluated exactly inside the 
constraint domain. Thus, symbolic execution builds up symbolic 
formulas over all symbolic inputs based on the system calls. The 
mix of concrete and symbolic execution is important for the 
efficiency of the algorithm, by reducing the formula size this way.

For each path, a mix of concrete and symbolic execution 
automatically generates constraint formulas. Each of these 
formulas represents conditions that the trigger input needs to 
satisfy in order to take the malicious code execution path. With 
the aid of a SAT/SMT solver (e.g. Z3) it is possible to decide if 
the constraint formula can be true. If the formula is true then 
there is at least one set of input values which satisfies the 
constraint formula. If the solver returns false, it is an indicator 
that the chosen analysed path is not feasible.

This process is repeated for all paths acquired. Afterwards, a set 
of satisfiable formulas is generated. Each of the satisfiable 
formulas in this set represents a trigger condition of a newly 
discovered path. Each of these paths depends on the system 
calls. Hence, the solver is able to build the trigger values (i.e. 
the used system calls) and the values for the trigger inputs, 
which are necessary to observe the malicious code.

By iterating the process described above, it is possible to 
automatically explore multiple code paths to discover the 
system calls of trigger-based behaviours in the program [16].

6.5 Runtime information collection

Greater precision can be achieved afterwards with dynamic 
analysis. Here, the program is at first symbolically executed. As 
data is propagated between variables, an expression is created 
that can reconstruct the variable value from input parameters. 
When a conditional branch statement is encountered, the 
symbolic expression of the predicate variables and the 
conditional expressions extracted from the branch instruction 
can be transformed into a constraint. This constraint sets the 
domain for outputs of the branch. For every branch to be fully 
explored, the input is manipulated in such a way that all 
constraints are satisfied.

Storage of symbolic information that is gained dynamically is 
also resource intensive. Gathering the symbolic information is 
time consuming and recording this information requires plenty 
of memory. Therefore, to solve every constraint and explore all 
branches in a program can be an impossible task.

6.6 Identifying possible suspicious behaviour

As mentioned before, solving all constraints is a resource-
intensive process. Because of this, static analysis is performed: 
first, to identify the locations in code where suspicious 
behaviours are possible, and second, to identify the paths that 
lead to these behaviours.

The control flow graph is generated using the system calls as 
starting points for the code transversal [17]. This transversal is 
done for every system call found in the code. With the aid of 
this transversal, it is possible to identify system calls that cannot 

Figure 3: Example of an application’s control flow graph (IDA 
Pro Screenshot) with high context sensitivity. The different 
colours implicate different necessary inputs to trigger the 

branch.

Figure 4: Example of a control flow graph (IDA Pro Screenshot) 
with multiple executable paths for a simple program.
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lead to suspicious API invocations. Suspicious invocations are 
defined as all API invocations that are not in the standard 
behaviour set.

For every suspicious behaviour found, a suspicious path is 
extracted, containing the sequence of method invocations from 
system call entry point to the invocation of the suspicious API.

6.7 Finding and extracting constraints for call 
paths
The presence of a suspicious system call and the existence of a 
path to the malicious behaviour do not imply that the malicious 
path can be executed at runtime. To determine if the path is 
feasible, all constraints of the path need to be verified. All 
constraints must be satisfied. Because of the additivity, the order 
of the constraints is not relevant. If, and only if, all constraints 
are satisfied, the malicious code can be started.

For each function along the suspicious path a check of the child 
function is executed. The invocation of the next function in the 
path is checked against the conditional return values right before 
the branching occurs. To also extract these dependencies, a 
control and data flow analysis is performed on the control flow 
graph of every single function.

This control flow analysis will resolve whether the conditional 
branch affects the execution of the next function, and if so, it 
will extract the constraints based on the variables used in the 
predicate of the branch statement. The analysis is performed 
until the constraint and data flow converge, also supporting 
loops and recursive functions.

If multiple control flow graph paths are found that lead to the 
next function invocations, the analysis should combine the 

Figure 5: Example of symbolic execution for simple program.

extract constraints of each path with a logical OR (∨), indicating 
that as long as one path is satisfied, the suspicious behaviour 
will be executed.

After all functions have been analysed, the constraints for every 
function are combined using the full context sensitivity.

Sometimes, it can happen that variables extracted for the 
constraints do not belong to functions that are part of the path. 
These constraints must still be extracted, as their return values 
affect the execution of the path.

7. CONCLUSION
SMT solvers are becoming an integral part of a security 
engineer’s tool kit. The presented work shows why solvers do a 
remarkable job in assisting malware analysts. The support in 
deciding whether suggested solutions are valid in their 
respective problem space saves both economic resources and the 
time of experts. Solvers support analysts looking for code 
vulnerabilities and analysing malicious code, detecting 
vulnerabilities in web applications and breaking encryptions.

Yet, solvers are not suited for generating domain-specific 
problem descriptions. The preliminary constraint generation 
step still has to be performed outside the solver.

Important work that should be focused on in the future are:

•	 Build a specialized constraint inference assistant, which 
will improve and help the generation of formal problem 
definitions for non-trivial problems in the area of computer 
security.

•	 Improve the constraint generation phase, making Automatic 
Exploit Generation practicable.
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•	 Improve SMT solvers in general, meaning also progress 
towards serial check and more secure cryptosystems.

SMT-based implementations on which I have worked before 
are:

•	 a binary garbage-code eliminator for malware analysis

•	 a XOR search

•	 some cryptographic algorithm breakers

•	 a generic unpacker

•	 a binary structure recognizer. 

SMT-based implementations on which I am currently working 
are:

•	 a C++ class hierarchy reconstructor

•	 r2 integration.

8. RELATED WORK

Lots of research has been done on binary analysis as well as on 
symbolic execution engines. Many tools have been built on top 
of KLEE [18] for code verification and tainted analysis. Also 
other symbolic execution frameworks have been built on top of 
Z3 [19], like angr [20] and manticore [21]. This work uses the 
same concepts but focuses on malware analysis.
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