
1PAPER PRESENTED AT VB2018 MONTREAL

2018
3 – 5 October 2018
MONTREALWWW.VIRUSBULLETIN.COM/CONFERENCE

ANALYSING COMPILED BINARIES
USING LOGIC

Thaís Moreira Hamasaki
F-Secure, Finland

barbieauglend@chaosdorf.de

ABSTRACT
Computer security is a serious issue which attracts the interest
of all nations. Malicious codes are implemented to stay hidden
both during the infection process and during the operation of the
code, preventing their removal and the analysis of the code. The
programs used today to detect malicious code, such as most
anti-virus software and firewalls, are problematic as a version of
the malicious program needs to have been analysed prior to the
detection itself.

The reason the analysis process is necessary is that these
security programs work using patterns that have been extracted
from the malware, called signatures. Furthermore, at least one
computer system needs to be infected in order for the code to be
analysed. These kinds of software defences work well for
detecting known malware, but they are no defence against new
threat variants. The industry’s approach still relies heavily on
the well-known technique of signature matching.

Software analysis is a critical point in dealing with malware,
since most samples employ some sort of packing or obfuscation
techniques in order to thwart analysis. It is also an area of
economic concern in protecting digital assets from intellectual
property theft.

Analysis tools help analysts identify vulnerabilities and issues
before they can cause harm downstream. Understanding how
software and hardware can be secured using tools and techniques
beyond the standard debuggers and unit tests ensures greater
security and integrity. This paper provides an introduction to
some practical applications of SMT solvers in IT security,
investigating the theoretical limitations and practical solutions,
focusing on their use as a tool for binary static analysis.

1. INTRODUCTION
Nowadays, most malware is programmed to stay hidden during
infection and operation, preventing its removal and the analysis
of its code. The current solutions used to detect malicious code,
such as anti-virus software and firewalls, are problematic as
prior information about the malicious code must be available in
order for those programs to detect the code on a system. This is
because these solutions work using patterns extracted from the
malware called signatures. Therefore, at least one computer
system needs to have been infected in order for the code to be
analysed.

Static analysis of a piece of malicious code is a very demanding
process. Usually, it’s done by a person (a security analyst) who
will stare at one binary code for hours, searching for patterns –
the signatures. Security analysts need tools to help them analyse
new threats: since malware is distributed in compiled form, a

disassembler is required. The process of analysing compiled
code is the reverse process of software engineering and
therefore called reverse engineering.

This paper will first introduce constraint programming to provide
a background to how solvers work, after which it will describe the
malware detection problem as a satisfiability problem, and finally
present an algorithm to analyse malware using logic.

2. CONSTRAINT PROGRAMMING
In this section, Constraint Programming (CP) and Constraint
Satisfaction Problems (CSPs) will be explained and an overview
of the most common solving techniques will be provided.
According to Eugene C. Freuder in [1]:

‘CP represents one of the closest approaches computer
science has yet made to the Holy Grail of programming: the
user states the problem, the computer solves it.’

CP is a declarative programming paradigm which consists of the
formulation of a solution to a problem as a CSP [2]. In the CSP
a number of variables are introduced, with well-specified
domains and which describe the state of the system. A set of
relations, called constraints, is then imposed on the variables
that make up the problem. These constraints are understood to
have to hold true for a particular set of bindings for the
variables, resulting in a solution to the CSP.

Constraints have some interesting properties when it is desirable
to work in different environments, such as:

•	 Additivity: The order of the constraints doesn’t matter, as
all that matters is that all constraints are met, i.e. the
conjunction of all declared constraints.

•	 Domains: Typically, constraints are used over specific
domains. Finite domains are one of most successful
domains of CP.

2.1 Constraint satisfaction problems

Constraint programming is devoted to solving constraint
satisfaction problems. A CSP, P, is defined as a tuple (X, D, C),
where [3]:

•	 X = {x
1
,x

2
,··· ,x

n
} is a finite set of n variables.

•	 D = {D
in
(x

1
),··· ,D

in
(x

n
)} is a set of initial domains. For each

variable x
i
∈ X,D

in
(x

i
) is the initial finite domain of its

possible values. CSP algorithms remove values from the
domains of variables through value assignments and
propagation. For any variable x

i
, we denote by D(x

i
) the

current domain of x
i
that at any time consists of values that

have not been removed from D
in
(x

i
). We assume that for

every x
i
∈ X, a total ordering <

d
can be defined on D

in
(x

i
).

•	 C = {c
1
,··· ,c

e
} is a set of e constraints. Each constraint c

i
∈

C is defined as a pair (vars(c
i
),rel(c

i
)), where:

-	 vars(c
i
) = {x

j1
,··· ,x

jk
} is an ordered subset of X called the

constraint scheme.

-	 rel(c
i
) is a subset of the Cartesian product

D
in
(x

j1
)x···xD

in
(X

jk
) that specifies the allowed

combinations of values for the variables in vars(c
i
).

2 PAPER PRESENTED AT VB2018 MONTREAL

2018
3 – 5 October 2018
MONTREAL WWW.VIRUSBULLETIN.COM/CONFERENCE

The size of vars(c
i
) is called the arity of the constraint c

i
.

Constraints that have an arity of 2 are called binary. Constraints
whose arity is greater than 2 are called non-binary. Every CSP
can be converted into an equivalent binary CSP, where all
constraints are binary [4]. The convenience of binary CSPs is that
they can be represented by a constraint graph. In such graphs the
nodes are labelled with the variable identifiers and the edges
connect pairs of variables inside some of the constraint domains.

Each tuple τ ∈ rel(c
i
) is an ordered list of values (a

1
,··· ,a

k
) such

that a
j
∈ D

in
(x

j
),j = 1,··· ,k. A tuple is valid if all the values in the

tuple are present in the domains of the corresponding variables.
That means:

A solution to a CSP is an assignment (or a tuple) where
every constraint is satisfied.

CSPs are also combinatorial problems that can be solved by
search. Unfortunately, systematic search – such as ‘generate and
test’ or ‘backtracking’ – is not usually feasible in practice.
Therefore, one of the main research topics in the area of
constraint satisfaction consists of finding efficient
constraint‑solving algorithms, like ‘consistency check’.

2.2 Consistency check

The process which verifies whether or not a given tuple is
allowed by constraint c

i
is called a consistency check.

Consistency check techniques were introduced to improve the
efficiency of search algorithms [5]. A constraint can be defined
either extensionally, by the set of allowed (or disallowed) tuples,
or intensionally, by a predicate or arithmetic function.

Consistency check techniques can rule out many inconsistent
tuples at a very early stage. Customarily, this is done by
removing values from a variable’s domain. Once the domain of
the variable becomes empty, we can ensure that the CSP has no
solution, as the consistency of the algorithm fails to achieve
consistency. However, the procedure is not complete, because
even if the algorithm achieves consistency, it does not
necessarily mean that the CSP has a solution.

Besides traditional search, there are a number of alternative
methods for solving CSPs, each with varying levels of success.
Among them, Satisfiability (SAT) and Satisfiability Modulo
Theory (SMT) are two of the most promising for use in malware
detection and binary analysis.

2.3 Satisfiablity solving

Satisfiability (SAT) basically consists of encoding CSPs into
Boolean satisfiability problems. A Boolean satisfiability
problem is the problem of determining whether the variables of
a given Boolean formula can be assigned in such a way as to
make the formula evaluate to true. This means that SAT can be
defined as a propositional formula.

A propositional formula is a formula composed from the
propositional operators ¬,∨,∧,−→,←→ and a finite set, V, of
Boolean valued variables.

An assignment or valuation is a map v : V → {false,true}. This
assignment v is lifted to propositional formulas by defining the
following:

•	 v(¬θ) = ¬v(θ)

•	 v(θ ∨ φ) = v(θ) ∨ v(φ)

•	 v(θ ∧ φ) = v(θ) ∧ v(φ)

•	 and so on.

A propositional formula θ is called satisfiable (SAT) if there
exists a v such as v(θ) = true. Then v is called a satisfying
assignment.

SAT was the first known example of an NP-complete problem.1
Nevertheless, thanks to better implementation techniques and
improvement of concepts, such as conflict-driven lemma
learning, these solvers are able to reduce the size of the search
space significantly.

2.4. Satisfiability Modulo Theory

Satisfiability Modulo Theory (SMT), as the name implies,
consists of encoding CSPs into SAT modulo theory problems.
An SMT formula is a generalization of a Boolean formula,
where some variables are replaced by predicates with predefined
interpretations like simple arithmetic.

While the language of SAT solvers is Boolean logic, the
language of SMT solvers is first-order logic. This language
includes the Boolean operations using more complicated
expressions involving constant, function, and predicate symbols
instead of propositional variables. Expressions in first-order
logic are made up of sequences of symbols. Symbols are
divided into logical symbols and non-logical symbols or
parameters.

The theory reasoning in an SMT solver is done with a theory
solver. Given a Σ-theory T, a theory solver for T takes as input a
set of Σ-literals and determines whether the set is satisfiable or
unsatisfiable.

For example, a formula contains a clause such as a ∨ b ∨ (x + 5)
≤ y, where a and b are Boolean variables and x and y are integer
variables. Such linear integer inequalities are evaluated
according to the background theory [6].

A theory is, at first, a set of first-order formulas closed under
logical consequence. That said, given a theory τ, τ is called
decidable if there is an effective method for determining
whether arbitrary formulas are included in τ.

A formula φ is called τ-satisfiable or τ-consistent if τ ∪{φ} is
satisfiable in the first-order sense. Otherwise, it is called
τ-unsatisfiable or τ-inconsistent.

Accordingly, the SMT problem for a theory τ is the problem of
determining, given a formula φ, whether φ is τ-satisfiable.

2.5 Examples of constraint satisfaction problems

CSPs are most well researched in the artificial intelligence field,
however they are not restricted to it. A well-known real-world
constraint satisfaction problem is a simple multi-lingual
translator tool, which combines two different problems:

1 A decision problem is NP-complete when it is in both NP and NP-hard.
The set of NP-complete problems is often denoted by NP-C or NPC.
The abbreviation NP refers to ‘non-deterministic polynomial time’.

3PAPER PRESENTED AT VB2018 MONTREAL

2018
3 – 5 October 2018
MONTREALWWW.VIRUSBULLETIN.COM/CONFERENCE

word-sense disambiguation – an open problem of natural
language processing and ontology – and the machine reading
comprehension [7].

In addition, almost all logic puzzles, such as the Rubik’s Cube
and Sudoku puzzles, can be expressed as CSPs, and many
solutions using SMT solvers can be found online. For those
interested in reading more, [8] is a deeper analysis of Sudoku as
a CSP.

Theoretical problems like Vertex-Cover and Graph
KColorability (Chromatic Number) are also examples of more
complex theoretical CSPs (where a set of start conditions exists
in NP-Complete scope) [9].

2.6 Solving CSPs with SMT solvers

Let’s consider the following systems of equations:

	

3x + 5y + z = 1

7x - 2y + 4z = -1

-6x + 3y + 2z = 0

we can write in SMT2 language:
(declare-const x Real)

(declare-const y Real)

(declare-const z Real)

(assert (=(+(+ (* 3 x) (* 5 y)) z) 1))

(assert (=(+(+ (* 7 x) (* 2 y)) (* 4 z)) (- 1)))

(assert (=(+(+ (* (- 6) x) (* 3 y)) 2z) 0))

(check-sat)

(get-model)

and this will output:

sat

(model

	 (define-fun z () Real

		 (- (/ 65.0 76.0)))

	 (define-fun y () Real

		 (/ 15.0 76.0))

	 (define-fun x () Real

		 (/ 11.0 38.0))

)

These are both solutions for our systems of equation.2

3. MALWARE
Numerous definitions have been offered to describe malware, the
name of which derives from ‘malicious software’. For the
purposes of this paper, the following description will be adopted:

Malware is a piece of software with unwanted functionality.

The variety of known and unknown malware is part of the
reason why detecting it is a difficult task. Categorizing
malicious code has increasingly become more complex as
newer versions appear to be combinations of those that belong
to existing malware families [10].

2 For more examples, see https://yurichev.com/writings/SAT_SMT_by_
example.pdf

A technique very commonly used in malware is binary
obfuscation. Obfuscation is a technique that makes binary and
textual data unreadable. Its implementation can be as simple as
a few bit manipulations, and as advanced as cryptographic
standards [11].

3.1 Malware detection

Absolute protection against malware can only be obtained by
absolute isolationism [12]. However, this is an unacceptable
solution nowadays, when everything is connected.

Software tools used to protect against malware infections
currently include intrusion detection systems (IDSs) and
anti-virus software (AV). IDSs are used to detect intrusions of
all kinds, not just malware. They often compare the pattern of a
program flow against a database of patterns of known attacks.
This method is called signature-based detection.

Signature-based AV is a very important piece of modern AV
multi-layer protection strategy. In the context of anti-virus,
‘signature-based’ means that files are marked or identified as
either benign or malicious by comparing them against a
database of binary patterns of known malware. The greatest
problem with this method is that new malware needs to be
discovered and analysed prior the effective detection.

Another method is anomaly-based detection, where intrusions
are detected by identifying deviations from the expected
behaviour of the program at runtime.

Naturally, it is desirable that all computer systems have the ability
to make decisions about which programs are allowed to execute
certain functions or call certain system information based on the
actions each program will take. Unfortunately, any policy based
on such requirements is almost untenable because trying to
determine whether a program will perform malicious actions is a
generally undecidable problem, also known as the ‘halting
problem’, which will be described in the following section.

3.2 Turing machines and the halting problem

Rice’s theorem postulates that, whatever property of programs
we’re interested in, one cannot write a program that determines
for each program whether it satisfies that property. We can
reduce Rice’s theorem to the halting problem.

The halting problem postulates that we cannot know if the
computation of a program on some input will ever terminate.
The importance of the undecidability of the halting problem lies
in its generality.

First of all, a device that is capable of computing the solution to
any problem that can be computed, provided that the device is
given enough storage and time for the computation to finish, is
defined as a universal computing machine – also known as a
Turing machine.

This device is called a Turing machine because Alan Turing,
English logician, was the first to come up with the idea of such
a device in 1936. Turing also conjectured that his definition of
computable was identical to the ‘natural’ definition. In other
words, a problem that cannot be solved by a Turing machine
cannot be solved in any systematic manner.

4 PAPER PRESENTED AT VB2018 MONTREAL

2018
3 – 5 October 2018
MONTREAL WWW.VIRUSBULLETIN.COM/CONFERENCE

The simplest class of problems to consider are binary problems,
i.e. given an input, the output can be ‘yes’ or ‘no’. These
problems are known as decision problems and they are formally
defined as:

Given an input alphabet Σ and a subset A of Σ*, where Σ* is a
set of finite strings formed by concatenating elements of Σ
along with the start string ‘ ’, determine whether x ∈ Σ* is in A.

The set L(M) = {x ∈ Σ* : accepts x} is called the language of the
Turing machine M that will accept x, whether x ∈ A. The
language A is recognizable if there is a Turing machine M with
L(M) = A. A is co-recognizable if Σ* − A is recognizable. And if
a language is recognizable and corecognizable, then it is
decidable.

To determine that a given program Φ is malware, it needs to be
shown that at least one undesirable function exists in the code.
That can be described as a binary problem, as the answer would
be ‘yes, the program is malicious’ or ‘no, the program is clean’.

The question here is whether the machine that computes the
answer will ever find an answer or will keep computing forever.

Since we are interested in finding out-of-bounds system calls,
Rice’s theorem says that there is no program that will give a
correct answer all the time. The program will sometimes fail or
never stop computing.

4. BINARY ANALYSIS
Today, the analysis of a program’s behaviour is often a tedious
manual process: when a new piece of potentially malicious code
is found, the analyst runs the program in a virtual machine and
observes it. If nothing happens in the first moment, one could
assume that a trigger condition exists and may not have been
met. If suspicions remain, disassembly of the program will be
performed and a mental model of the program’s execution can
be built. Furthermore, the analyst will try to guess what kind of
input or system setup could trigger the malicious code. The
process will be repeated until the analyst runs out of patience,
time, or is lucky enough to uncover the trigger-based behaviour.
In this paper, system calls are defined as iterations between a
new piece of software and the base system.

4.1 Anomaly-based detection
In behaviour-based malware detection the most important input
is the knowledge of a malicious behaviour. In anomaly-based
detection, the inverse of this knowledge is used in a learning
phase. This enables the detector to identify anomalous
behaviour by its deviation from normal behaviour. Once the
detector has obtained the knowledge, one can employ its
detection technique.

4.2 Behavioural analysis using multiple
execution paths
The standard program behaviour is given by sequences of
system calls. The execution traces of these system calls are
collected and the program interactions can be monitored.

The problem with dynamic analysis tools is that only a single
path is observed. However, it is possible to trigger certain

malicious calls under specific circumstances, e.g. if the program
is running in a sandbox, the clock tick is not the same as it
would be in a fully operational system and the malicious code
won’t be triggered after a clock check. Another example of
limitation from the standard program behaviour analysis would
be a connection check:

Example of sending a ping:

•	 Call the socket function with a parameter IPX then call the
sendto function with the ICMOECHO argument

•	 Call the IcmpSendEcho function

There is more than one way to send a ping using system calls.
To solve this limitation, an abstraction of it is needed. The
detection system should allow the exploration of multiple
execution paths and the identification of malicious calls under
special triggers.

Most of the existing systems for automated malware analysis
only allow the tracking of the system calls that are invoked from
a single path, like ‘sandboxes’. Unfortunately, this is just a small
part of the complete program behaviour. To obtain different
executions paths for the same program, some branching points
are chosen on the basis of system calls made previously. This
will provide a better overview of the code’s actions and a set of
trigger conditions.

5. MALWARE SCANNING AS A CONSTRAINT
SATISFACTION PROBLEM
Before starting to design a solution, it is important to notice how
triggers are implemented in high level languages. They are often
implemented as conditional jumps depending on inputs from
trigger types such as time, return values of network requests,
keyboard layouts, and so on.

Malicious threats are triggered if the conditional jump evaluates
to the designated direction, e.g. April Fool’s Day Malware that
is only launched on 1 April.

The trigger condition is the set of conditions which the trigger
input needs to satisfy in order for the code execution to go down
the path to the malicious code. The values of the trigger input
set satisfying the trigger condition are called trigger values.

The system calls symbolic execution can be used to
automatically explore the trigger-based behaviour in the
program based on the given trigger types.

5.1 Binary static analysis
Static analysis is a commonly used tool in malware detection.
For most object-oriented codes, static analysis works directly on
the binary code and performs various analyses, such as
reconstruction of the class hierarchy and method calls, and
(most importantly for dynamic detection) extracts the control
flow and data flow information.

The control flow and the semantics of the program need to be
developed in order subsequently to choose the parts of the
binary that should be used in the detection. For that, the binary
needs to be parsed to a control flow graph. After that, the
branching points of the control flow graph are chosen based on
the return value of the former requested system calls.

5PAPER PRESENTED AT VB2018 MONTREAL

2018
3 – 5 October 2018
MONTREALWWW.VIRUSBULLETIN.COM/CONFERENCE

These branching points in the program execution are chosen in
such a way that all the alternatives are interesting for being
dependent on the system call returning value.

5.2 Symbolic execution

The symbolic execution of the program generates a structural
coverage of its control flow based on constraint analysis of the
multiple paths. This means that it is possible to determine at
time t a set of conditions necessary to take the branch b or not.
Every variable on our graph is represented as a symbolic value
and each branch is now represented as a constraint solution set.
This way, the symbolic execution with the aid of constraint
solvers allows the program to go from an entry point EP to a
end point END.

In particular, the system calls found in code – the trigger inputs
– are represented symbolically and the instructions that depend
on these system calls return values which also operate on
symbolic values and therefore are executed symbolically.

The key idea behind a classical symbolic execution is to use
symbolic values as input values instead of actual data,
representing the values of program variables as symbolic
expressions, so that the outputs computed are expressed as
functions of the symbolic inputs.

During the symbolic execution, a symbolic state is maintained,
mapping the program variables to symbolic expressions.
Furthermore, a constraint symbolic path SP is now dislocked as
a first order free formula over symbolic expressions. The SP
aggregates constraints on the inputs that trigger the execution to
follow the associated path. At every conditional statement, i.e. if
(condition) branch

1
else branch

2
, SP is updated with conditions

on the inputs to choose between alternative paths on these
branches. With the assistance of a constraint solver, a new path
condition SP* is created and initialized to SP ∧ ¬φ(condition)
and SP is updated to SP∧φ(condition), where φ(condition)
denotes the symbolic predicate obtained by evaluating condition
in symbolic state φ. If SP* becomes unsatisfiable, symbolic
execution terminates along the corresponding path.

Whenever symbolic execution along a path terminates – with or
without error – the current SP is solved and the solution forms
the acceptable input set. This shows that, if the program is
executed on these concrete inputs, it will take the same path as
the symbolic execution did and terminate.

5.3 Generalized symbolic execution

For code containing loops or recursion that may result in an
infinite number of paths, generalized symbolic execution is
used. Generalized symbolic execution will extend the classical
symbolic execution with the ability of handling multithreading
and program fragments. The input of multithreading fragments
of a program are then recursive data structures.

In the generalized symbolic execution the input is handled in
recursive data structures by using lazy initialization, starting the
execution of the method on inputs with uninitialized fields and
non-deterministically initialized fields when they are first
accessed during the function’s symbolic execution.

5.4 Limitations

In many cases, the satisfiability solver may not be able to return
an answer to the constraint problem within a reasonable time.
Because of this, it is important in the implementation to set a
timeout for the analysis of single paths. It is also important to
explore as many different branches and paths as possible.

An additional technical limitation for automatically analysing a
piece of malware is that the code is often packed or obfuscated.
Code packing is a technique where binary code is statically
compressed, combined with decompression code into a single
executable, and only decompressed at runtime. This way the
malicious code is readable just after unpacking. Often, the
decompressed code is available in the memory only during
runtime. Sometimes, however, the code can be self‑modifying
and the decompressed information may be written directly into
the program file.

In this case, the unpacking algorithm overwrites the program
code itself, dynamically generating the malicious code in a
different address where no data was stored before.

As briefly mentioned before, code obfuscation is a technique
used to make static analysis difficult, where so-called ‘garbage
code’ is added to pollute the overview of the control flow graph.
It is one of most widely used techniques for hiding malicious
code inside clean programs.

In cases where code packing or code obfuscation are applied, it
is difficult, if not impossible, to disassemble the binary code and
it is necessary to pre-process the sample.

6. STRUCTURE OF THE ALGORITHM
By disassembling the binary code, the instructions of the
program can be parsed into a control flow graph. In order to
generate this graph it is necessary to use static analysis
techniques. Static analysis can be divided in two parts:
intra‑procedural and inter-procedural.

6.1 Intra-procedural binary analysis

Intra-procedural analysis is the analysis performed on a single
function, independent from other methods in the program. The
function is represented by instructions grouped into static basic
blocks.

A static basic block is a sequence of instructions that has
exactly one entry point and one exit point. These basic blocks
are the representation of the most simple unit of the code and
they describe a linear flow of instructions. A non-linear control
flow appears only at the end of a basic block. Each instruction
that is a target of a branch instruction defines a new basic block.
In general, every program can be uniquely partitioned into a set
of non-overlapping static basic blocks. Figure 1 shows an
example of three basic blocks showing a conditional jump.

Whenever it is possible to remove an instruction inside a basic
block, it is possible to remove the complete block [13].

The execution path between two basic blocks is parsed in the
control flow graph, modelling the relationship and dependence
between these two basic blocks. Using the control flow graph

6 PAPER PRESENTED AT VB2018 MONTREAL

2018
3 – 5 October 2018
MONTREAL WWW.VIRUSBULLETIN.COM/CONFERENCE

and the data-flow analysis, one can determine how values are
passed from one block to the next as well as the conditional
branch statements, where the execution flow may diverge
depending on the value of a variable.

As a certain execution path is desired (the goal is to reach the
malicious code) the values for these variables must be
constrained. These constraints can then be extracted from the
branch instructions.

6.2 Inter-procedural analysis

Inter-procedural analysis is the analysis performed on the entire
application as a whole, considering the dependencies and
data-flow relationships between different functions. The result
of this kind of analysis is a graph, where the values and
functions that are used to invoke the next function are modelled.

As the functions are inside basic blocks, one can use these
blocks to derive a graph with a possible control flow
representation of the processor, where each node is a basic
block and the edges represent the control flow among these
blocks. Each control flow edge models a dependency between
two basic blocks. This graph is called an application’s call
graph.

The precision of the graph and the performance of the analysis
depend on the options used to generate the control flow edges.
The context sensitivity of the graph is an important parameter
to consider for the matter of malware detection. The
configuration of the precision parameters determines the
representation of system calls on the graph. High context
sensitivity enables cross references when system calls are
invoked in multiple locations. The nodes can then be
differentiated by the invoking function, the parameters used for
the invocation, or the receiving function [14].

s t a r t () { foo (1 ,10); foo (3 ,20); }

bar (){ foo (1 ,10); }

foo (x , y){ . .	 some	 code	 . .

}

Figure 2: Example of context sensitivity for a simple program.

Context sensitivity may also depend on the functions or calls
themselves. This means that increasing context sensitivity
results in a greater number of system call clones among the
graph nodes. Accordingly, it also directly increases the precision
of analysis. However, the graph construction may become
exponentially resource-intensive for the processor.

In most cases, static analysis is a balance between desired or
needed precision and availability of resources.

6.3 Limitations on creating a control flow graph
The analysis of binary code is a non-trivial task. Disassembling
and interpreting binary files is complicated for a lot of reasons.
One of the most recurrent problems is the ‘Code Discovery
Problem’ [15]. In many Instruction Set Architectures (ISAs),
binary data and executable instructions are saved in the same
way. If the analyst is not able to distinguish between instructions
and data, the whole process might be invalidated as some
functions may not be discovered or data may be misinterpreted.

Another complication with control flow detection arises if indirect
control flow instructions are used inside the binary code.
Commonly, control flows are determined by the jump tables that
that are generated by the compiler. Typically, the targets of these
jumps are easy to compute. Using expression substitution, it is
possible to compute the jumps with high precision, allowing the
expression to be checked against branch normal forms. Figure 3
shows an example of an application’s control flow graph with
high context sensitivity; Figure 4 shows an example of a control
flow graph with multiple executable paths for a simple program.

Other sources of indirect control flow are method pointers
which are available in most high-level languages, e.g. to
implement inheritance or to allow dynamic program behaviour.
The targets of this kind of indirect control flow are very hard to
compute and until now, no approach could be found which can
guarantee the precise detection of all targets.

Figure 1: Example of three basic blocks (IDA Pro Screenshot)
showing a conditional jump.

7PAPER PRESENTED AT VB2018 MONTREAL

2018
3 – 5 October 2018
MONTREALWWW.VIRUSBULLETIN.COM/CONFERENCE

6.4 Mixed concrete and symbolic execution

The instructions in a basic block do not depend on trigger input to
operate on concrete values and can be evaluated exactly inside the
constraint domain. Thus, symbolic execution builds up symbolic
formulas over all symbolic inputs based on the system calls. The
mix of concrete and symbolic execution is important for the
efficiency of the algorithm, by reducing the formula size this way.

For each path, a mix of concrete and symbolic execution
automatically generates constraint formulas. Each of these
formulas represents conditions that the trigger input needs to
satisfy in order to take the malicious code execution path. With
the aid of a SAT/SMT solver (e.g. Z3) it is possible to decide if
the constraint formula can be true. If the formula is true then
there is at least one set of input values which satisfies the
constraint formula. If the solver returns false, it is an indicator
that the chosen analysed path is not feasible.

This process is repeated for all paths acquired. Afterwards, a set
of satisfiable formulas is generated. Each of the satisfiable
formulas in this set represents a trigger condition of a newly
discovered path. Each of these paths depends on the system
calls. Hence, the solver is able to build the trigger values (i.e.
the used system calls) and the values for the trigger inputs,
which are necessary to observe the malicious code.

By iterating the process described above, it is possible to
automatically explore multiple code paths to discover the
system calls of trigger-based behaviours in the program [16].

6.5 Runtime information collection

Greater precision can be achieved afterwards with dynamic
analysis. Here, the program is at first symbolically executed. As
data is propagated between variables, an expression is created
that can reconstruct the variable value from input parameters.
When a conditional branch statement is encountered, the
symbolic expression of the predicate variables and the
conditional expressions extracted from the branch instruction
can be transformed into a constraint. This constraint sets the
domain for outputs of the branch. For every branch to be fully
explored, the input is manipulated in such a way that all
constraints are satisfied.

Storage of symbolic information that is gained dynamically is
also resource intensive. Gathering the symbolic information is
time consuming and recording this information requires plenty
of memory. Therefore, to solve every constraint and explore all
branches in a program can be an impossible task.

6.6 Identifying possible suspicious behaviour

As mentioned before, solving all constraints is a resource-
intensive process. Because of this, static analysis is performed:
first, to identify the locations in code where suspicious
behaviours are possible, and second, to identify the paths that
lead to these behaviours.

The control flow graph is generated using the system calls as
starting points for the code transversal [17]. This transversal is
done for every system call found in the code. With the aid of
this transversal, it is possible to identify system calls that cannot

Figure 3: Example of an application’s control flow graph (IDA
Pro Screenshot) with high context sensitivity. The different
colours implicate different necessary inputs to trigger the

branch.

Figure 4: Example of a control flow graph (IDA Pro Screenshot)
with multiple executable paths for a simple program.

8 PAPER PRESENTED AT VB2018 MONTREAL

2018
3 – 5 October 2018
MONTREAL WWW.VIRUSBULLETIN.COM/CONFERENCE

lead to suspicious API invocations. Suspicious invocations are
defined as all API invocations that are not in the standard
behaviour set.

For every suspicious behaviour found, a suspicious path is
extracted, containing the sequence of method invocations from
system call entry point to the invocation of the suspicious API.

6.7 Finding and extracting constraints for call
paths
The presence of a suspicious system call and the existence of a
path to the malicious behaviour do not imply that the malicious
path can be executed at runtime. To determine if the path is
feasible, all constraints of the path need to be verified. All
constraints must be satisfied. Because of the additivity, the order
of the constraints is not relevant. If, and only if, all constraints
are satisfied, the malicious code can be started.

For each function along the suspicious path a check of the child
function is executed. The invocation of the next function in the
path is checked against the conditional return values right before
the branching occurs. To also extract these dependencies, a
control and data flow analysis is performed on the control flow
graph of every single function.

This control flow analysis will resolve whether the conditional
branch affects the execution of the next function, and if so, it
will extract the constraints based on the variables used in the
predicate of the branch statement. The analysis is performed
until the constraint and data flow converge, also supporting
loops and recursive functions.

If multiple control flow graph paths are found that lead to the
next function invocations, the analysis should combine the

Figure 5: Example of symbolic execution for simple program.

extract constraints of each path with a logical OR (∨), indicating
that as long as one path is satisfied, the suspicious behaviour
will be executed.

After all functions have been analysed, the constraints for every
function are combined using the full context sensitivity.

Sometimes, it can happen that variables extracted for the
constraints do not belong to functions that are part of the path.
These constraints must still be extracted, as their return values
affect the execution of the path.

7. CONCLUSION
SMT solvers are becoming an integral part of a security
engineer’s tool kit. The presented work shows why solvers do a
remarkable job in assisting malware analysts. The support in
deciding whether suggested solutions are valid in their
respective problem space saves both economic resources and the
time of experts. Solvers support analysts looking for code
vulnerabilities and analysing malicious code, detecting
vulnerabilities in web applications and breaking encryptions.

Yet, solvers are not suited for generating domain-specific
problem descriptions. The preliminary constraint generation
step still has to be performed outside the solver.

Important work that should be focused on in the future are:

•	 Build a specialized constraint inference assistant, which
will improve and help the generation of formal problem
definitions for non-trivial problems in the area of computer
security.

•	 Improve the constraint generation phase, making Automatic
Exploit Generation practicable.

9PAPER PRESENTED AT VB2018 MONTREAL

2018
3 – 5 October 2018
MONTREALWWW.VIRUSBULLETIN.COM/CONFERENCE

•	 Improve SMT solvers in general, meaning also progress
towards serial check and more secure cryptosystems.

SMT-based implementations on which I have worked before
are:

•	 a binary garbage-code eliminator for malware analysis

•	 a XOR search

•	 some cryptographic algorithm breakers

•	 a generic unpacker

•	 a binary structure recognizer.

SMT-based implementations on which I am currently working
are:

•	 a C++ class hierarchy reconstructor

•	 r2 integration.

8. RELATED WORK

Lots of research has been done on binary analysis as well as on
symbolic execution engines. Many tools have been built on top
of KLEE [18] for code verification and tainted analysis. Also
other symbolic execution frameworks have been built on top of
Z3 [19], like angr [20] and manticore [21]. This work uses the
same concepts but focuses on malware analysis.

REFERENCES

[1]	 Freuder, E. C. In pursuit of the holy grail. Constraints,
vol. 2, no. 1, pp. 57–61, Apr 1997.
https://doi.org/10.1023/A:1009749006768.

[2] 	 Rossi, F.; Beek, P. V.; Walsh, T. Handbook of constraint
programming. Elsevier Science, 2006.

[3] 	 Hentenryck, P. V. Constraint Satisfaction in Logic
Programming. MIT Press, 1989.

[4] 	 Dechter, R. On the expressiveness of networks with
hidden variables. pp.1:556–562, 1990.

[5] 	 Kumar, V. Algorithms for constraint satisfaction
problems: A survey. p.1:3244, 1992.

[6] 	 Sebastiani, R. Lazy satisability modulo theories.
pp.3–4:141–244, 2007.

[7] 	 Maryellen, M. S. S.; MacDonald, C. Handbook of
Psycholinguistics, 2nd ed. Elsevier Ltd, 2006.

[8] 	 Siddharth Agarwal, A. K. Functional smt solving with
z3 and racket. FormaliSE, 2013. https://www.cse.iitk.
ac.in/users/karkare/pubs/icsews13formaliseid1-p-
16138-preprint.pdf.

[9] 	 Garey, M. R.; Johnson, D. S. Computers and
Intractability: A Guide to the Theory of
NP‑Completeness. New York, NY, USA: W. H.
Freeman & Co., 1979.

[10] 	 McGraw, G.; Morrisett, G. Attacking malicious code: A
report to the infosec research council. IEEE Software,
2000.

[11] 	 Collberg, C.; Thomborson, C.; Low, D. Manufacturing
cheap, resilient, and stealthy opaque constructs. In
Proceedings of the 25th ACM SIGPLAN-SIGACT
symposium on Principles of programming languages.
ACM, 1998, pp.184–196.

[12] 	 Cohen, F. Computer viruses – theory and experiments.
pp.22–35, 1987.

[13] 	 Hex-RaysSA. The Interactive Disassembler Help Index.
2015. https://www.hexrays.com/products/ida/support/
idadoc/.

[14] 	 Reps, T.; Horwitz, S.; Sagiv, M. Precise interprocedural
dataflow analysis via graph reachability. In Proceedings
of the 22Nd ACM SIGPLANSIGACT Symposium on
Principles of Programming Languages, ser. POPL ’95.
New York, NY, USA: ACM, 1995, pp.49–61.
http://doi.acm.org/10.1145/199448.199462.

[15] 	 Wartell, R.; Zhou, Y.; Hamlen, K. W.; Kantarcioglu,
M.; Thuraisingham, B. Differentiating code from data
in x86 binaries. In Joint European Conference on
Machine Learning and Knowledge Discovery in
Databases. Springer, 2011, pp.522–536.

[16]	 Bardin, S.; Kosmatov, N.; Cheynier, F. Efficient
leveraging of symbolic execution to advanced coverage
criteria. In Software Testing, Verification and Validation
(ICST), 2014 IEEE Seventh International Conference
on. IEEE, 2014, pp.173–182.

[17] 	 Thierry, A. Desassemblage et dtection de logiciels
malveillants auto-modifiants. Ph.D. dissertation,
Universit de Lorraine 2015, 2015, thse de doctorat
dirige par Marion, Jean-Yves Informatique Universit de
Lorraine 2015. http://www.theses.fr/2015LORR0011.

[18] 	 Cristian Cadar, D. E.; Dunbar, D. Klee: Unassisted and
automatic generation of high-coverage tests for
complex systems programs, 2008.

[19] 	 Moura L. D.; Bjørner, N. Z3: An efficient smt solver. In
Proceedings of the Theory and Practice of Software,
14th International Conference on Tools and Algorithms
for the Construction and Analysis of Systems, ser.
TACAS’08/ETAPS’08. Berlin, Heidelberg: Springer-
Verlag, 2008, pp.337–340. http://dl.acm.org/citation.
cfm?id=1792734.1792766.

[20] 	 Shoshitaishvili, Y.; Wang, R.; Salls, C.; Stephens, N.;
Polino, M.; Dutcher, A.; Grosen, J.; Feng, S.; Hauser,
C.; Kruegel, C.; Vigna, G. Sok: (state of) the art of war:
Offensive techniques in binary analysis. 2016.

[21] 	 Mossberg, M. Manticore: Symbolic execution for
humans. 2017. https://blog.trailofbits.com/2017/04/27/
manticoresymbolic-execution-for-humans.

[22] 	 Ligh, M. H.; Case, A.; Levy, J.; Walters, A. The Art of
Memory Forensics: Detecting Malware and Threats in
Windows, Linux, and Mac Memory, 1st ed. Wiley
Publishing, 2014.

[23] 	 Hentenryck, P. V.; Michel, L. Constraint-based local
search. MIT Press, 2005.

10 PAPER PRESENTED AT VB2018 MONTREAL

2018
3 – 5 October 2018
MONTREAL WWW.VIRUSBULLETIN.COM/CONFERENCE

[24] 	 Codognet, P.; Diaz, D. Yet another local search method
for constraint solving. Lecture Notes in Computer
Science, 2001.

[25] 	 Russinovich, M. E.; Solomon, D. A. Microsoft
Windows Internals, Fourth Edition: Microsoft Windows
Server(TM) 2003, Windows XP, and Windows 2000
(Pro-Developer). Redmond, WA, USA: Microsoft
Press, 2004.

[26] 	 Eilam, E.; Chikofsky, E. J. Reversing: secrets of reverse
engineering. Indianapolis (Ind.): Wiley, 2005.
http://opac.inria.fr/record=b1133490.

[27] 	 Howe, J. M.; King, A. A pearl on sat solving in prolog.
FLOPS 2010, vol. 6009, no. 1, pp.165–174, 2010.

[28] 	 Stephens, N.; Grosen, J.; Salls, C.; Dutcher, A.; Wang,
R.; Corbetta, J.; Shoshitaishvili, Y.; Kruegel, C.; Vigna,
G. Driller: Augmenting fuzzing through selective
symbolic execution. 2016.

[29] 	 Shoshitaishvili, Y.; Wang, R.; Hauser, C.; Kruegel, C.;
Vigna, G. Firmalice – automatic detection of
authentication bypass vulnerabilities in binary
firmware. 2015.

[30] 	 Cifuentes, C.; Sendall, S. Specifying the semantics of
machine instructions. p.126. 1998. http://dl.acm.org/
citation.cfm?id=580914.858217.

[31]	 Khattak, S.; Ramay, N.; Khan, K.; Syed, A.; Khayam,
S. A taxonomy of botnet behavior, detection, and
defense. p.16:898924, 2014.

[32] 	 Szor, P. The Art of Computer Virus Research and
Defense. Addison-Wesley Professional, 2005.

[33] 	 Cadar, C.; Sen, K. Symbolic execution for software
testing: Three decades later. Commun. ACM, vol. 56,
no. 2, pp.82–90, Feb. 2013. http://doi.acm.org/
10.1145/2408776.2408795.

[34] 	 Djoudi, A.; Bardin, S. Binsec: Binary code analysis
with low-level regions. In Proceedings of the 21st
International Conference on Tools and Algorithms for
the Construction and Analysis of Systems – Volume
9035. New York, NY, USA: Springer-Verlag New York,
Inc., 2015, pp.212–217.

[35] 	 Hai, N. M.; Ogawa, M.; Tho, Q. T. Obfuscation Code
Localization Based on CFG Generation of Malware.
Cham: Springer International Publishing, 2016,
pp.229–247.

[36] 	 Vanegue, J.; Heelan, S.; Rolles, R. Smt solvers in
software security.” in WOOT, 2012, pp.85–96.

[37] 	 Filiol, E. Malware pattern scanning schemes secure
against black-box analysis. Journal in Computer
Virology, vol. 2, no. 1, pp.35–50, 2006.
http://dx.doi.org/10.1007/s11416-006-0009-x.

[38] 	 Menezes, A. J.; Vanstone, S. A.; Oorschot, P. C. V.
Handbook of Applied Cryptography, 1st ed. Boca
Raton, FL, USA: CRC Press, Inc., 1996.

[39] 	 Skowyra, R.; Casteel, K.; Okhravi, H.; Zeldovich, N.;
Streilein, W. Systematic analysis of defenses against

return-oriented programming. In International
Workshop on Recent Advances in Intrusion Detection.
Springer, 2013, pp.82–102.

[40] 	 Bennett, J. T. The number of the beast. 2013.
https://www.fireeye.com/blog/threatresearch/2013/02/
the-number-of-the-beast.html.

[41] 	 Constantin, L. Adobe confirms zeroday exploit
bypasses adobe reader sandbox. 2013.
http://www.pcworld.com/article/2028163/
adobeconfirms-zeroday-exploit-bypasses-adobe-
readersandbox.html.

[42] 	 McKinney, W. Python for data analysis. Beijing,
Cambridge, Farnham: O’Reilly, 2012, 2013.
http://opac.inria.fr/record=b1133860.

[43] 	 Stallings, W. Operating Systems: Internals and Design
Principles, 6th ed. Upper Saddle River, NJ, USA:
Prentice Hall Press, 2008.

