
VIRUS BULLETIN   www.virusbulletin.com 

1APRIL 2019

Covering the 
global threat landscape

ALTERNATIVE COMMUNICATION 
CHANNEL OVER NTP 
Nikolaos Tsapakis 
Independent researcher

1. INTRODUCTION
In this article I will explore Network Time Protocol (NTP) 
as an alternative communication channel. Although there are 
already some interesting publications on this topic [1, 2], this 
article will provide practical examples, code, and the basic 
theory behind the idea.

2. COVERT CHANNELS
In computer security, a covert channel is a type of attack that 
creates the ability to transfer information objects between 
processes that, according to the computer security policy, are 
not supposed to be allowed to communicate [3]. 

An example of such a communication channel is DNS, which 
has been abused by malware in order to hide network traffi c 
between client (infected computer) and server (command and 
control). One example (among many) of malware that uses 
DNS as a covert channel is the Denis malware family [4].

Another example of such a communication channel is ICMP, 
which has also been abused in the past by malware [5].

The NTP protocol may also be used to carry data and, as 
such, it may be open to exploitation in a similar way to DNS 
and ICMP. 

To widen the idea, any protocol that provides space for data 
may be used as a starting point for similar exploitation as long 
as both client and server follow the format specifi cation and 
avoid inconsistencies.

3. BASIC NTP COMMUNICATION
The Network Time Protocol (NTP) is a networking protocol 
for clock synchronization between computer systems over 
packet-switched, variable-latency data networks [6].

I will generate a basic NTP request and response on a 
WinOS machine and explain what such basic communication 
represents. Assuming that the clock of the client has a date 
of 3 March 2019, clicking ‘Update Now’ in the Internet Time 
Settings will result in the client sending an NTP request to 
the time server. Such a default server would be 
time.windows.com. The server will reply with an NTP 
message which contains time measurements. Those 
measurements will drive the clock synchronization.

In the basic operation of the protocol a client sends a packet 
to a server and records the time the packet left the client in the 
Origin Timestamp fi eld (T1). 

T1 = Mar 3, 2019 18:55:13.480902999 UTC (as seen in 
response).

> Request

Network Time Protocol (NTP Version 3, client)

 Flags: 0xdb, Leap Indicator: unknown (clock 
unsynchronized),

  Version number: NTP Version 3, Mode: client

  Peer Clock Stratum: unspecifi ed or invalid (0)

 Peer Polling Interval: 10 (1024 sec)

 Peer Clock Precision: 0.015625 sec

 Root Delay: 0.198867797851563 seconds

 Root Dispersion: 8.80982971191406 seconds

 Reference ID: NULL

 Reference Timestamp: Mar 3, 2019 18:54:23.652902999 UTC

 Origin Timestamp: Jan 1, 1970 00:00:00.000000000 UTC

 Receive Timestamp: Jan 1, 1970 00:00:00.000000000 UTC

 Transmit Timestamp: Mar 3, 2019 18:55:13.480902999 UTC

> Request (in hex)

db 00 0a fa 00 00 32 e9 00 08 cf 51 00 00 00 00

e0 26 a1 5f a7 24 a6 a8 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 e0 26 a1 91 7b 1c 75 81

> Response

Network Time Protocol (NTP Version 3, server)

 Flags: 0x1c, Leap Indicator: no warning, Version 
number: NTP Version 3,

  Mode: server

  00.. .... = Leap Indicator: no warning (0)

  ..01 1... = Version number: NTP Version 3 (3)

  .... .100 = Mode: server (4)

 Peer Clock Stratum: secondary reference (2)

 Peer Polling Interval: 10 (1024 sec)

 Peer Clock Precision: 0.000000 sec

 Root Delay: 0.131500244140625 seconds

 Root Dispersion: 0.0191650390625 seconds

 Reference ID: 128.138.141.172

 Reference Timestamp: Mar 6, 2019 18:51:40.408170399 UTC

 Origin Timestamp: Mar 3, 2019 18:55:13.480902999 UTC

 Receive Timestamp: Mar 6, 2019 18:55:05.080168299 UTC

 Transmit Timestamp: Mar 6, 2019 18:55:05.080171299 UTC

> Response (in hex)

1c 02 0a e9 00 00 21 aa 00 00 04 e8 80 8a 8d ac

e0 2a 95 3c 68 7d da f7 e0 26 a1 91 7b 1c 75 81

e0 2a 96 09 14 85 e8 e2 e0 2a 96 09 14 86 1b 37



VIRUS BULLETIN   www.virusbulletin.com 

APRIL 20192

The server records the time the packet was received 
in the Receive Timestamp (T2).

T2 = Mar 6, 2019 18:55:05.080168299 UTC (as 
seen in response).

A response packet is then assembled with the 
original Origin Timestamp and the Receive 
Timestamp equal to the packet receive time, and 
then the Transmit Timestamp is set to the time 
at which the message is passed back toward the 
client (T3).

T3 = Mar 6, 2019 18:55:05.080168299 UTC (as 
seen in response).

The client then records the time the packet arrived 
(T4), giving the client four time measurements. 
These four parameters are passed into the 
client’s timekeeping function to drive the clock 
synchronization function [7].

Note that the Destination Timestamp fi eld is not 
included as a header fi eld; it is determined upon 
arrival of the packet and made available in the 
packet buffer data structure [8].

4. NTP V4 MESSAGE FORMAT
Figure 1 shows the packet format for NTP v4 [8].

Figure 2 shows the NTP timestamp format used for 
Timestamp fi elds [8].

The format may be compared with the generated 
messages shown in Section 3.

Notice that the Extension Field is missing from 
the generated messages in Section 3. This is an 
interesting fi eld, which is described as follows [8]:

‘In NTPv4, one or more extension fi elds can be 
inserted after the header and before the MAC, 
which is always present when an extension fi eld 
is present.’

This means that I should be able to add an 
Extension fi eld and place data for tranfer to the 
server inside the Extension Field. I should also add 
a message authentication code (MAC) consisting 
of the Key Identifi er fi eld and Message Digest 
(dgst) fi eld.

Figure 3 shows the Extension Field format [9].

Figure 4 shows the NTP Extension Field Type 
format and values [9].

Taking into consideration the above format, I will 
construct an NTP v4 message and send it to a 
publicly available time server. The server should be 
able to reply. Both messages should be visible in 

0                   1                   2                   3

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

|LI | VN  |Mode |    Stratum     |     Poll      |  Precision   |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

|                         Root Delay                            |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

|                         Root Dispersion                       |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

|                          Reference ID                         |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

|                                                               |

+                     Reference Timestamp (64)                  +

|                                                               |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

|                                                               |

+                      Origin Timestamp (64)                    +

|                                                               |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

|                                                               |

+                      Receive Timestamp (64)                   +

|                                                               |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

|                                                               |

+                      Transmit Timestamp (64)                  +

|                                                               |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

|                                                               |

.                                                               .

.                    Extension Field 1 (variable)               .

.                                                               .

|                                                               |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

|                                                               |

.                                                               .

.                    Extension Field 2 (variable)               .

.                                                               .

|                                                               |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

|                          Key Identifi er                       |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

|                                                               |

|                            dgst (128)                         |

|                                                               |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

Figure 1: Packet format for NTP v4.

0                   1                   2                   3

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

|                            Seconds                            |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

|                            Fraction                           |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

Figure 2: NTP timestamp format used for Timestamp fi elds.



  VIRUS BULLETIN   www.virusbulletin.com 

APRIL 2019 3

my Wireshark session. Neither message should break 
the protocol format.

5. CONSTRUCTING NTP V4 REQUEST
Taking into consideration the protocol format and 
the generated NTP traffi c from Section 3, I wrote 
a Python script which constructs NTP v4 requests 
and sends them to a publicly available server. After 
sending a request, the script waits for a reply. After a 
reply arrives, the script sleeps for a few seconds and 
then sends the next request. All requests are similar. 
The script generates random data for the Extension 
Field and MAC fi elds. The size of data in the 
Extension Field is also random from a minimum to a 
maximum limit. The script is shown in the Appendix. 
Comments make it easier to understand the script.

6. TESTING MULTIPLE TIME SERVERS
I tested the script against multiple time servers 
[10]. Some of them did not respond at all, while 
others responded. An increase in the data size in 
the Extension Field (1K and above) may cause 
some servers to stop responding after sending a few 
requests. A decrease in sleep among requests may 
also cause some servers to stop responding after 
sending a few requests.

Overall, it appears that the messages were arriving at 
the servers without breaking the protocol and without 
being blocked, since the servers were responding.

This indicates that such generated network traffi c can 
be used for tranferring data from source (client) to 
destination (custom server) without being blocked. 
And for the case of a custom server, responses would 
continue to be sent down to the client, since the 
custom server confi guration which serves the purposes 
of the client would apply.

7. DETECTION
The following is the Snort rule that would detect 
NTP messages like those generated by the script in 
Section 5. In case the monitoring system is a gate/
proxy, the rule should be modifi ed and applied for 
both incoming and outgoing traffi c. Note that the rule 
was tested on a VM and the script was generating 
traffi c with bad checksums. I used the following 
command to start Snort on test system:
snort -i 1 -c c:\Snort\etc\snort.conf -A console 
-k none

Notice the -k option, which means that Snort will 
process the packets with invalid checksums.

0                   1                   2                   3

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

|          Field Type           |            Length             |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

.                                                               .

.                            Value                              .

.                                                               .

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

|                       Padding (as needed)                     |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

Figure 3: Extension Field format.

0                   1

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5

+---------------+---------------+

|R|E|      Code |       Type    |

+-------------------------------+

+------------+----------------------------------------------+

| Field Type |  Meaning                                     |

+------------+----------------------------------------------+

|   0x0000   | crypto-NAK (with Field Length of 0)          |

|   0x0000   | RESERVED: Permanently Unassigned             |

|   0x0001   | RESERVED: Unassigned                         |

|   0x0002   | Autokey: No-Operation Request                |

|   0x8002   | Autokey: No-Operation Response               |

|   0x0102   | Autokey: Association Message Request         |

|   0x8102   | Autokey: Association Message Response        |

|   0x0202   | Autokey: Certifi cate Message Request         |

|   0x8202   | Autokey: Certifi cate Message Response        |

|   0x0302   | Autokey: Cookie Message Request              |

|   0x8302   | Autokey: Cookie Message Response             |

|   0x0402   | Autokey: Autokey Message Request             |

|   0x8402   | Autokey: Autokey Message Response            |

|   0x0502   | Autokey: Leapseconds Value Message Request   |

|   0x8502   | Autokey: Leapseconds Value Message Response  |

|   0x0602   | Autokey: Sign Message Request                |

|   0x8602   | Autokey: Sign Message Response               |

|   0x0702   | Autokey: IFF Identity Message Request        |

|   0x8702   | Autokey: IFF Identity Message Response       |

|   0x0802   | Autokey: GQ Identity Message Request         |

|   0x8802   | Autokey: GQ Identity Message Response        |

|   0x0902   | Autokey: MV Identity Message Request         |

|   0x8902   | Autokey: MV Identity Message Response        |

|   0x0005   | Checksum Complement                          |

|   0x2005   | Checksum Complement (deprecated fl ag 0x2000) |

+------------+----------------------------------------------+

Figure 4: NTP Extension Field Type format and values.



VIRUS BULLETIN   www.virusbulletin.com 

APRIL 20194

Editor: Martijn Grooten

Head of Testing: Peter Karsai

Security Test Engineers: Gyula Hachbold, Adrian Luca, 
Csaba Mészáros, Tony Oliveira, Ionuţ Răileanu 

Sales Executive: Allison Sketchley

Editorial Assistant: Helen Martin

© 2019 Virus Bulletin Ltd, The Pentagon, Abingdon Science 
Park, Abingdon, Oxfordshire OX14 3YP, England
Tel: +44 (0)1235 555139 Email: editor@virusbulletin.com
Web: https://www.virusbulletin.com/

alert udp any any -> any 123 (dsize:>68; content:"|01 
00|"; 

depth:2; off set:48; msg:"Suspicious Incoming NTP 
packet"; sid:1000005;)

•  Detects incoming messages to destination port 123.

•  The size of the message should be more than 68 bytes. 
The reason for this is that a standard NTP message is 48 
bytes long and in case an extension fi eld is present, MAC 
(here 20 bytes long) is mandatory as per [8] (section 
7.5). This results in a minimum size of 68 bytes.

• Byte values 0x01 and 0x00 should exist in offsets 48, 
49. Those are ext_r_e_version and ext_opcode values. 
That particular WORD combination is defi ned as 
‘RESERVED: Unassigned’ [9], but it may not really 
mean anything in the case of a covert channel.

As it may be easily understood, this rule should be changed in 
case different values are used. In such a case an investigation 
should be performed to make sure traffi c does not originate 
from a network that uses the NTP extension fi eld for legitimate 
purposes, for example AutoKey [9].

8. A CUSTOM PROTOCOL INSIDE NTP
Taking into consideration that NTP is over UDP [11] and 
that data should be split into multiple segments (requests), 
additional rules would apply for proper communication on top 
of NTP. Some of these rules could be the following:

• Messages of the custom protocol may exist inside the 
Extension Field or even in MAC.

• There must be an integrity check for Extension Field 
data.

• There must be a sequence number due to multiple 
segments.

• Start/End characters must exist for defi ning the start/end 
of stream. For example, assume that a stream is a fi le 
being uploaded in multiple segments. That is, multiple 
NTP requests.

• Client would request server to ACK requests.

• Server would request client to ACK responses.

• There must be encryption of Extension Field data and 
MAC data.

9. CONCLUSION
NTP protocol is an interesting case to use as a communication 
channel because it is widely used, well documented and 
allowed to fl ow through networks without applying strict 
rules. Once again, any protocol that provides space for data 
may be used as a starting point for similar exploration as long 
as both client and server follow the specifi cation and avoid 
inconsistencies.

10. REFERENCES
[1]  https://ricklahaye.info/projects/ntp.pdf.

[2]  https://www.researchgate.net/
publication/316287783_Covert_Channel_over_
Network_Time_Protocol.

[3]  https://en.wikipedia.org/wiki/Covert_channel.

[4]  https://securelist.com/use-of-dns-tunneling-for-cc-
communications.

[5]  https://blog.trendmicro.com/trendlabs-security-
intelligence/phishing-trojan-uses-icmp-packets-to-
send-data/.

[6]  https://en.wikipedia.org/wiki/Network_Time_
Protocol.

[7]  https://www.cisco.com/c/en/us/about/press/internet-
protocol-journal/back-issues/table-contents-58/154-
ntp.html.

[8]  https://tools.ietf.org/html/rfc5905.

[9]  https://tools.ietf.org/html/draft-stenn-ntp-extension-
fi elds-08.

[10]  https://www.ntppool.org/zone.

[11]  https://en.wikipedia.org/wiki/User_Datagram_
Protocol.

https://www.researchgate.net/publication/316287783_Covert_Channel_over_Network_Time_Protocol
https://en.wikipedia.org/wiki/Network_Time_Protocol
https://en.wikipedia.org/wiki/User_Datagram_Protocol


  VIRUS BULLETIN   www.virusbulletin.com 

APRIL 2019 5

APPENDIX

------#------#------#------<START CODE>------#------#------#------

import socket

import sys

import random

import time

import datetime

def main():

 try:

  s = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)

 except socket.error:

  print 'Failed to create socket'

  sys.exit()

 host = '2.gr.pool.ntp.org'

 port = 123

 while(True) :

  # 0xE3 = 11 100 011b 

  # li   = 11b  = 3 => Clock is unsynchronized

  # vn   = 100b = 4 => Version 4

  # mode = 011b = 3 => Client

  li_vn_mode = chr(0xE3)

  

  # Unsynchronized

  stratum    = chr(0x10)

 

  # Suggested default limits for minimum and maximum poll intervals

        # are 6 and 10, respectively [4].

  poll = chr(0x06)

 

  # Random, selected in such a way so that it has a small

        # value < 1 sec and appears realistic.

  precision = chr(random.randint(236,254))

 

  # Random, selected in such a way so that it has a small

        # value < 1 sec and appears realistic.

  root_delay = chr(0x00) +\

      chr(0x00) +\

                     chr(random.randint(1,9)) +\

      chr(random.randint(1,254))

 

  # Random, selected in such a way so that it has a small 

        # value < 1 sec and appears realistic.

  root_dispersion = chr(0x00) +\

        chr(0x00) +\

                          chr(random.randint(1,9)) +\

                          chr(random.randint(1,254))

 

  # No reference

  reference_id = chr(0x00) +\

        chr(0x00) +\



VIRUS BULLETIN   www.virusbulletin.com 

APRIL 20196

        chr(0x00) +\

        chr(0x00)

 

  # This is a zero NTP timestamp, assigned later.

  zero_timestamp = chr(0x00) +\

       chr(0x00) +\

       chr(0x00) +\

       chr(0x00) +\

       chr(0x00) +\

       chr(0x00) +\

       chr(0x00) +\

       chr(0x00)

 

  # Get current datetime as NTP timestamp

  diff  = datetime.datetime.utcnow() -\

               datetime.datetime(1900, 1, 1, 0, 0, 0)

       

  timestamp = diff .days*24*60*60+diff .seconds

  timestamp_1 = timestamp & 0xff 000000

  timestamp_1 = timestamp_1 >> 24

  timestamp_2 = timestamp & 0x00ff 0000

  timestamp_2 = timestamp_2 >> 16

  timestamp_3 = timestamp & 0x0000ff 00

  timestamp_3 = timestamp_3 >> 8

  timestamp_4 = timestamp & 0x000000ff 

   

  # Set to current timestamp minus a small value.

  # Keeping it same among packets.

  reference_timestamp = chr(timestamp_1) +\

         chr(timestamp_2) +\

                              chr(timestamp_3) +\

         chr(0x00) +\

                              chr(0x7D) + chr(0x21) +\

         chr(0x73) + chr(0x83)

         

  # Set to zero timestamp, since I notice this value been

  # set by default when I try to sync time from a Win OS.

  originate_timestamp = zero_timestamp

  

  # Set to zero timestamp, since I notice this value been

  # set by default when I try to sync time from a Win OS.

  receive_timestamp = zero_timestamp

  

  # Set to current timestamp

  transmit_timestamp = chr(timestamp_1) +\

        chr(timestamp_2) +\

        chr(timestamp_3) +\

        chr(timestamp_4) +\

                             chr(random.randint(1,254)) +\

        chr(random.randint(1,254)) +\

        chr(random.randint(1,254)) +\

        chr(random.randint(1,254))

      

  # Using unassigned value for basic extension fi eld format.

  # 



  VIRUS BULLETIN   www.virusbulletin.com 

APRIL 2019 7

  # Field Type = [ext_opcode, ext_r_e_version] =>

        # [0x00, 0x01] = 0x0001 = RESERVED: Unassigned

  #

  # ext_r_e_version = 00000001b =>

  # R = 0 (Request), 

  # E = 0 (OK),

  # Version = 000001

  #

  # ext_opcode = 0x00

  ext_r_e_version = chr(0x01)  

  ext_opcode = chr(0x00)  

  

  # Max size of data for extension fi eld

  max_size = 500

  

  # Min size of data for extension fi eld

  min_size = 300

  

  size = random.randint(min_size,max_size)

  data = ''

  

  for x in range(size):

   data = data + chr(random.randint(1,254))

 

  # Padding extension data

  pad = size % 4

  pad = 4 - pad

  size = size + pad + 4

 

  padding = ''

 

  while(pad!=0):

   padding = padding + chr(0x00)

   pad = pad - 1

 

  a = size & 0x0000ff ff 

  b = a & 0x000000ff 

  c = a & 0x0000ff 00

  c = c >> 8

  ext_len  = chr(c) + chr(b)

  ext_data = data + padding

 

  # Random since I am not actually going to use it.

        # Just making sure NTP message format does not break.

  key_id = chr(random.randint(1,254)) +\

     chr(random.randint(1,254)) +\

     chr(random.randint(1,254)) +\

     chr(random.randint(1,254))

 

  # Random since I am not actually going to use it.

        # Just making sure NTP message format does not break.

  digest = chr(random.randint(1,254)) +\

     chr(random.randint(1,254)) +\

     chr(random.randint(1,254)) +\



VIRUS BULLETIN   www.virusbulletin.com 

APRIL 20198

     chr(random.randint(1,254)) +\

     chr(random.randint(1,254)) +\

     chr(random.randint(1,254)) +\

     chr(random.randint(1,254)) +\

     chr(random.randint(1,254)) +\

     chr(random.randint(1,254)) +\

     chr(random.randint(1,254)) +\

     chr(random.randint(1,254)) +\

     chr(random.randint(1,254)) +\

     chr(random.randint(1,254)) +\

     chr(random.randint(1,254)) +\

     chr(random.randint(1,254)) +\

     chr(random.randint(1,254))

 

  ext = ext_r_e_version + ext_opcode + ext_len + ext_data

 

  # Create the NTP packet

  msg = li_vn_mode +\

     stratum +\

     poll +\

     precision +\

     root_delay +\

     root_dispersion +\

     reference_id +\

     reference_timestamp +\

     originate_timestamp +\

     receive_timestamp +\

     transmit_timestamp +\

     ext +\

     key_id +\

     digest

 

  print 'Message is : ' + msg

 

  try :

   # Send the NTP packet

   s.sendto(msg, (host, port))

   

   # Wait for reply from sever

   d = s.recvfrom(1024)

   reply = d[0]

   addr = d[1]

   print 'Server reply : ' + reply

   time.sleep(random.randint(1,3))

 

  except socket.error, msg:

   print 'Error Code : ' + str(msg[0]) + ' Message ' + msg[1]

   sys.exit()

if __name__ == "__main__":

    main()

------#------#------#------<END   CODE>------#------#------#------


