
VIRUS BULLETIN www.virusbulletin.com

1APRIL 2020

Covering the
global threat landscape

 DETECTION OF VULNERABILITIES
IN WEB APPLICATIONS BY
VALIDATING PARAMETER
INTEGRITY AND DATA FLOW
GRAPHS
Abhishek Singh & Ramesh Mani
Prismo Systems, USA

INTRODUCTION
Web application vulnerabilities are an important entry vector
for threat actors. According to the 2019 Verizon Data Breach
Incident Report [1], web applications, privilege misuse and
miscellaneous errors account for 81 per cent of breaches of
retail organizations.

In a paper we presented at VB2019 [2], we detailed query
and parameter integrity algorithms used to detect SQL,
NoSQL and OS command injection exploitation. In this
follow-up paper, we detail algorithms that can be used to
detect SQL injection in stored procedures, persistent cross-
site scripting (XSS), and server-side request forgery (SSRF)
by instrumenting web applications. Server-side request
forgery allows a threat actor to access internal resources
by leveraging a vulnerability in Internet-facing web
applications – which can be identifi ed by data fl ow analysis.
SQL injection in stored procedures will lead to an additional
clause in the executing SQL query, and persistent XSS in
the database will lead to HTML elements in the executing
query. This additional code, in the form of SQL clauses or
HTML elements due to the injection-based exploitation,
lays the foundation for the detection algorithms that are
discussed in this paper.

TECHNICAL DETAILS OF SQL INJECTION IN
STORED PROCEDURES
Like SQL queries, stored procedures can also be vulnerable
to SQL injection. If the stored procedures are using
dynamic SQL and the dynamic SQL query is constructed
by concatenating the parameters then the stored procedures
are prone to SQL injection exploitation. Figure 1 shows an
example of a vulnerable stored procedure.

If the @user variable is admin’-- and the password is none,
the query becomes:

'SELECT * FROM authtable WHERE UserName =
'admin'--' AND Pass = 'none' '

If there is a username admin, the query will return true and
authentication will be successful.

In order to detect SQL injection in stored procedures, honey
SQL queries are used. The following are some of examples of
honey queries:
• SELECT * WHERE id = '[arguments passed to
Stored procedure]' AND honey_value = '2' ,

• (SELECT * WHERE id = '[arguments passed to
Stored procedures]' AND honey_value = '1')

• (SELECT * WHERE id = [Arguments passed to
Stored procedures] AND honey_value = '1')

• SELECT * WHERE id = [Arguments passed to
Stored procedure] AND honey_value = '1'

• SELECT * WHERE id = '''[arguments passed to
Stored procedure]''' AND honey_value = '2' ,

• (SELECT * WHERE id = '''[arguments passed to
Stored procedures]''' AND honey_value = '1')

• 'SELECT * WHERE id = "%s" AND honey_value =
"2"'

The arguments passed to the stored procedures are extracted
and inserted into honey queries. If an argument is inserted in
the fi rst honey query, the normalized honey SQL query will
always be SELECT * WHERE id = $1 AND honey_value
= $2 and the parse tree of the normalized fi rst SQL query
will be as shown in Figure 2. The argument of the stored
procedure will always be data and not an SQL clause.

In the case of an SQL injection exploit in a stored procedure,
the input parameters to the stored procedure will contain data
along with the SQL clause. An example of an exploit sent
to a stored procedure is: "abhi' ORDER BY 6-- upxr".
When the exploit is inserted in the fi rst honey SQL query,
the query becomes SELECT * WHERE id = 'abhi' ORDER
BY 6-- upxr AND honey_value = '2'. The normalized
honey query with exploit becomes SELECT * WHERE id =
$1 ORDER BY $2-- upxr AND honey_value = '2'. The
parse tree of the normalized query with SQL injection exploit
is as shown in Figure 3. SQL injection exploits the stored
procedures and inserts additional clauses, leading to changes
in the parse tree of the normalized honey query.

Figure 1: Stored procedure prone to SQL injection.

VIRUS BULLETIN www.virusbulletin.com

APRIL 20202

Figure 2: Parse tree of the normalized honey SQL query.

Figure 3: Parse tree of the normalized honey query with SQL injection exploit.

 VIRUS BULLETIN www.virusbulletin.com

APRIL 2020 3

Honey query integrity algorithm:
detection of SQL injection in stored
procedures
The algorithm to detect SQL injection exploitation in
stored procedures makes use of application-level hooks
to instrument the functions which invoke database stored
procedures, setting designated parameters and executing the
stored procedures such as prepareCall(), setString()
and execute(). The instrumentation helps to reveal the
parameters that are passed to the stored procedures. The
detection algorithm makes use of a set of honey queries. A
parse tree of the normalized honey queries is computed and
stored.

During every invocation of the API that invokes the stored
procedures, designated parameters are assigned to the stored
procedures and the procedures are executed; arguments
passed to the stored procedures are extracted. These extracted
parameters are then passed to the honey SQL queries, a parse
tree of the honey queries is computed and compared with
the pre-stored parse tree. If there is an additional or deleted
node in the parse tree of the honey queries, an alarm for SQL
injection in the stored procedures is raised.

TECHNICAL DETAILS OF SSRF
In 2019 the server-side request forgery exploitation technique
[3] was used to retrieve AWS (Amazon Web Services)
credentials that were subsequently used to steal the personal
information of over 100 million Capital One customers.

In any traditional network, local host, web-based services
and the internal networks are behind a fi rewall. SSRF allows
a threat actor to exploit a vulnerability in a web application
and to make an HTTP request to the local host, web-based
services or in the internal networks. Figure 4 shows the
vulnerable code of the Google Forms WordPress plug-in [4],
which is prone to SSRF.

If a threat actor sends "http://docs.google.com@
internalip.com" the request will pass the regular
expression check in the code shown in Figure 4 and
will be sent to the internal IP at the address denoted by
"internalip.com". This will prompt a response from
the services hosted in the internal network. As per the
RFC 3986 [5], the structure of the URI will be as shown in
Figure 5.

Figure 4: Vulnerable check in the Google Forms plug-in, leading to SSRF.

 Figure 5: Structure of URI as per RFC 3986.

As per RFC 3986, the authority component is preceded by a
double slash (“//”) and is terminated by the next slash (“/”),
question mark (“?”) or number sign (“#”) character, or by the
end of the URI.

RFC 3986 also specifi es the format of authority, as shown in
Figure 6.

Figure 6: Format of authority as per RFC 3986.

So if the exploit "http://legitimatewebsite.com@
internalip.com" is sent to a function which parses input,
such as urllib.parse, it will be parsed and will give the
output value of the host as legitimatewebsite.com while
urllib.urlopen() will show the value of the input as
internalip.com. This mismatch in the value of the host
allows a threat actor to bypass the checks in web applications.
Besides the mismatch in the value of the host, RFC 3986
also specifi es the option of providing host as IP-literal,
IPv4Address or reg-name.

Figure 7: Options for IP address.

This means that any check for IP by a web application must
ensure that the legitimate IP addresses are checked in every
format.

Det ection of SSRF
The algorithm to detect SSRF instruments APIs such as
urllib.urlopen(), urllib.request.urlopen(), etc.,
which take a URI as an input parameter and open a network
object denoted by the URI to read it. In addition, methods
that accept user inputs, such as GET, POST, etc., are also
instrumented. A program dependency graph is then used to
identify the APIs that make network connections and accept

VIRUS BULLETIN www.virusbulletin.com

APRIL 20204

inputs from methods that accept user inputs such as GET()
and POST(). For every invocation of an API that opens a URI,
a check is made to determine if the IP address of the URL
to which the connection is going is either local, a loopback
address, or the local link address. If the condition is found to
be true, then by using the data fl ow graph, it can be checked
whether the parameters passed to the API which opens a
network object denoted by the URI are from a method which
accepts external input. If this condition is found to be true,
then an alert for SSRF is raised. The internal IP address as
per RFC 1918 is shown in Figure 8.

The loopback IP address for most operating systems is
127.0.0.1 ~ 127.255.255.254. If the URI is a fi le, then
the data fl ow graph is used to check whether the parameters
passed to the APIs which open fi les are from methods which
accept external inputs. If the condition is found to be true
then an alert for SSRF is raised.

T ECH NICAL DETAILS OF PERSISTENT
CROSS-SITE SCRIPTING
In the case of a persistent XSS vulnerability, methods that
accept user inputs, such as POST, etc., are used by a threat
actor to inject an XSS exploit. These exploits then get stored
in the backend database or in a secure store. This stored data
is then sent to the victim without HTML escaping, where the
XSS exploit gets executed.

Figure 9 shows exploitable code [6] for persistent XSS
in a WordPress plug-in and the changes made to the code
to remove the vulnerability. As shown in the code, there
is insuffi cient sanitization of the plug-in version numbers
before they get displayed by invoking the printf API on the
corresponding plug-in page in the repository. This version
number is retrieved from the database. Threat actors can
exploit the vulnerability by inserting an XSS exploit with
JavaScript code in the version number. This will lead to the
execution of the JavaScript code. As shown in Figure 9, in the
patched code the esc_html() function has been added to
escape the string to ensure it is not passed as HTML.

Detec tion of persistent cross-site scripting in
databases

The algorithm to detect persistent cross-site scripting makes
use of application-level hooks to construct a program
dependency graph (PDG). The PDG captures the fl ow of data
and control from methods which accept external or user input,
such as GET, POST, Cookies, etc., to the functions which
execute the SQL query such as mysql_query(), mysql_db_
query(), mysql_unbuff ered_query(), pg_execute(),
pg_query(), pg_query_params(), pg_prepare(),
pg_send_query(), and pg_send_query_params(). Once
the PDG is generated, it is used to identify the legitimate SQL
queries, which are the sink for the value from the methods

Figure 8: Internal IP address as per RFC 1918.

Figure 9: Code changes in WordPress plug-in to prevent persistent XSS.

 VIRUS BULLETIN www.virusbulletin.com

APRIL 2020 5

which accept user or external input such as GET, POST, etc.
For every invocation of the query execution function a data
fl ow graph is used to check if the input to the query execution
function is from user input. If the condition is found to be true,
the input is parsed against the HTML parser [7] to check if the
input is an HTML element. If this condition is found to be true,
an alert for persistent XSS is raised.

CONCL USION
The algorithm to detect SQL injection in stored procedures,
persistent XSS, and SSRF makes use of application-level
hooks. Injection-based exploitation leads to additional code,
resulting in changes to the legitimate code of the application.
The computation of changes in the code is carried out for
every access to the database. If there is a deviation from the
original code, which is identifi ed by changes in the parse
tree of honey queries or by executing the external inputs to
the executing query against the HTML parser, an alert for
injection exploitation is raised.

The algorithm to detect injection-based exploitation has the
following inherent advantages:

• The algorithm identifi es the injection vulnerability in
the code during the invocation of the query execution
functions. With each detected exploitation attempt, the
vulnerable code path is also detected. This automatic
identifi cation of the vulnerable part of the code will
help in the patching of the code, preventing further
exploitation.

• The algorithm only leverages binary instrumentation of
the application to detect injection-based exploitation.
Hence the detection is independent of the deployment
of an application and the manner in which it accepts
external inputs. The application can be deployed as a
backend microservice and can accept batched requests
which get broken down by the middle layer and served to
the rear end microservices. In this scenario the algorithm
will also detect injection exploits.

The parameter and honey query integrity algorithm follows
the principle of detect, respond, and remediate. Not only does
the algorithm detect exploitation, but responsive measures
can be applied to stop exploitation; it also provides remedial
action, which will increase the exploitation complexity for a
threat actor. In the case of the parameter and query integrity
algorithm, remedial action is patching the vulnerable code
path, which is automatically identifi ed with each detected
exploitation attempt. If the code is patched, detection alerts
will decrease, increasing the exploitation complexity for a
threat actor.

REFERENCE S
[1] 2019 Data Breach Investigations Report.

https://enterprise.verizon.com/resources/
reports/2019-data-breach-investigations-report.pdf.

[2] Singh, A.; Mani, R. Catch me if you can: detection
of injection exploitation by validating query and
API integrity. https://www.virusbulletin.com/
virusbulletin/2020/01/vb2019-paper-catch-me-if-
you-can-detection-injection-exploitation-validating-
query-and-api-integrity/.

[3] Krebs, B. What we can learn from the capital one
hack. https://krebsonsecurity.com/tag/capital-one-
breach/.

[4] Google Forms <= 0.91 - Unauthenticated Server-Side
Request Forgery (SSRF). https://wpvulndb.com/
vulnerabilities/9013.

[5] Uniform Resource Identifi er (URI): Generic Syntax
RFC 3986. https://tools.ietf.org/html/rfc3986.

[6] Code changes to remove persistent XSS in
WordPress. https://meta.trac.wordpress.org/
changeset/7195.

[7] HTML parser. https://godoc.org/golang.org/x/net/
html.

Head of Testing: Peter Karsai

Security Test Engineers: Gyula Hachbold, Adrian Luca,
Csaba Mészáros, Tony Oliveira, Ionuţ Răileanu

Sales Executive: Allison Sketchley

Editorial Assistant: Helen Martin

© 2020 Virus Bulletin Ltd, Manor House - Offi ce 6, Howbery
Business Park, Wallingford OX10 8BA, UK

Tel: +44 20 3920 6348 Email: editorial@virusbulletin.com

Web: https://www.virusbulletin.com/

https://enterprise.verizon.com/resources/reports/2019-data-breach-investigations-report.pdf
https://www.virusbulletin.com/virusbulletin/2020/01/vb2019-paper-catch-me-if-you-can-detection-injection-exploitation-validating-query-and-api-integrity/
https://krebsonsecurity.com/tag/capital-one-breach/
https://wpvulndb.com/vulnerabilities/9013
https://tools.ietf.org/html/rfc3986
https://meta.trac.wordpress.org/changeset/7195
https://godoc.org/golang.org/x/net/html

