
IBM Global Services

© Copyright IBM Corporation 2007

IBM Internet Security Systems
Ahead of the threat.™

© 2005 Internet Security Systems. All rights reserved. Contents are property of Internet Security Systems.

Novel code obfuscation with COM

Robert Freeman
Team Lead
Protection Technologies Group

VB2007

2

IBM Internet Security Systems

© Copyright IBM Corporation 2007IBM Internet Security Systems, “Novel code obfuscation with COM”

Agenda

What is code obfuscation?
About this talk.
COM Proxy to Windows API Technique.
Demos.
Detection opportunities and challenges.
Candidacy as a future threat.

3

IBM Internet Security Systems

© Copyright IBM Corporation 2007IBM Internet Security Systems, “Novel code obfuscation with COM”

What is code obfuscation?

Any time the original code intent is made
difficult to ascertain.
Goals of obfuscation vary: delay analysis,
hope analysts miss something, bypass
detection technology, etc.
Scripts and compiled applications can utilize
similar and dissimilar code obfuscation
techniques.

– Dissimilar techniques highlight feasibility and
relevance issues.

4

IBM Internet Security Systems

© Copyright IBM Corporation 2007IBM Internet Security Systems, “Novel code obfuscation with COM”

About this talk

Malware commonly uses code obfuscation whether it
is a binary executable or script.
Little discussion on combining the two
(binary+script) may surprise us later on.
Talk assumes some existing understanding of the
Component Object Model (COM).
Using COM, we can add named items to ActiveScript
libraries such as VBScript and JavaScript to proxy
calls to WinAPI from script code.
Will discuss detection opportunities and challenges.

5

IBM Internet Security Systems

© Copyright IBM Corporation 2007IBM Internet Security Systems, “Novel code obfuscation with COM”

COM Proxy Technique

At its core, it is like DOM creation:

– CoCreateInstance() with IID_IActiveScript.
– QueryInterface() returned with

IID_IActiveScriptParse.
– SetScriptSite() with returned interface and

self-created IActiveScriptSite.
– InitNew() on IActiveScriptParse interface.
– AddNamedItem() to IActiveScript with your

object exposing methods and properties.

6

IBM Internet Security Systems

© Copyright IBM Corporation 2007IBM Internet Security Systems, “Novel code obfuscation with COM”

VB2007 COM Proxy Specifics

Many ways to implement.
– This will be reiterated later on.

This sample proxy exposes the following
methods to the ActiveScript a la COM:

– LoadLibrary(BSTR libname, …)
– RegisterCallback(IDispatch* callbackfunc, …)
– BSTRtoLONG(BSTR inbstr, …)
– Alert(BSTR alerttext)

Proxy in this case has zero knowledge of
Windows libraries/APIs.

7

IBM Internet Security Systems

© Copyright IBM Corporation 2007IBM Internet Security Systems, “Novel code obfuscation with COM”

VB2007 COM Proxy Specifics

How does it actually proxy between JS and Win32/64?
The IActiveScript engine will query OLE’s
GetIDsOfNames() for an ID to pass to the invoke()
method for IDispatch objects.
We can write our own IDispatch methods instead of
relying on the default provided.
We obtain the WinAPI call pointer during
GetIDsOfNames() for OLE to pass to invoke() as the
DispatchID (DISPID).
invoke() accepts an arbitrary number of parameters
from OLE as an array.
Thus, a custom object returned by our LoadLibrary()
will allow you to make calls to the Windows library as
if the APIs were exposed by the object.

8

IBM Internet Security Systems

© Copyright IBM Corporation 2007IBM Internet Security Systems, “Novel code obfuscation with COM”

Demonstration Placeholder

Scenarios to watch out for:

– Stand-alone EXE
– DLL injected into other process
– DLL used as browser plug-in

May need to instantiate JS/VBS libraries but not
limited to one browser.

9

IBM Internet Security Systems

© Copyright IBM Corporation 2007IBM Internet Security Systems, “Novel code obfuscation with COM”

COM Proxy Specifics Reminder

Not all proxies need to be implemented like the
sample discussed to work.

– GetIDsOfNames() doesn’t need to be the device used to obtain
an API address.

– invoke() doesn’t need to call the desired WinAPI.
Could do something esoteric like copying WinAPI
parameters into a BSTR for further obfuscation.
The type library information can be loaded either
from a file/moniker or executable resource through
OLE’s LoadTypeLib().

– DIY alternative with OLE’s CreateDispTypeInfo() and
CreateStdDispatch().

10

IBM Internet Security Systems

© Copyright IBM Corporation 2007IBM Internet Security Systems, “Novel code obfuscation with COM”

Detecting COM Proxies to WinAPI

Look inside GetIDsOfNames() method:

– GetProcAddress() call
– FS:[] references (incl. FS:[0])
– References to static addresses outside of

code/data pages
Look inside invoke() method:

– Any x86 LOOP instructions or equivalent?
– x86 CALL to the DISPID sent to invoke()
– PUSHA/POPA blocks

11

IBM Internet Security Systems

© Copyright IBM Corporation 2007IBM Internet Security Systems, “Novel code obfuscation with COM”

Detecting COM Proxies to WinAPI

Look inside exposed methods:

– Any calls to suspicious APIs using
parameters passed from method input.

Don’t count on this!
– Any x86 CALL to a BSTR input parameter.

A problem though with VARIANT type.
Suggestions do not cover all possibilities.

– Consider combining heuristics with
knowledge of DOM-like creation.

12

IBM Internet Security Systems

© Copyright IBM Corporation 2007IBM Internet Security Systems, “Novel code obfuscation with COM”

COM Proxy to WinAPI Detection Challenges

Multiple ways to obtain the address of WinAPIs.
Easy to obfuscate storage of WinAPI addresses in
both proxy utility and script.
Different ways to write the translation routine to
place values on the stack for WinAPI calls.
Stack translation need not occur in same code
branch as WinAPI call.
Stack translation could occur entirely within script,
though it will require a helper method to write to
arbitrary offsets.
Proxy can have more “knowledge” than the VB2007
sample and hence reduce the arbitrary nature of the
proxy implementation.

13

IBM Internet Security Systems

© Copyright IBM Corporation 2007IBM Internet Security Systems, “Novel code obfuscation with COM”

COM Proxy to WinAPI Detection Challenges

The script language could be any installed
ActiveScript library. The only changes needed to go
from JS to VBS support is the CLASSID for
CoCreateInstance()—and rewriting the script code for
that language.

The script (JS/VBS/etc) itself can be heavily
obfuscated and simultaneously
compressed/encrypted.

Think of today’s webfuscations if they could call Win32 APIs!

The script could be made to look innocuous by
careful proxy design.

The script component could exist remotely:
– WSOCK2 / WININET APIs
– XMLHTTP ActiveX

14

IBM Internet Security Systems

© Copyright IBM Corporation 2007IBM Internet Security Systems, “Novel code obfuscation with COM”

COM Proxies:
Is this madness or is this Sparta?

– Madness:
Latency issues with API calls and callbacks.
Most proxies will be easy to detect with smart static
signatures or behavioral analysis when processing malicious
script.
Restricting availability of ActiveScript libraries thwarts attack.

– Sparta:
Few remaining frontiers?
Proxying may defeat some generic detection techniques.
Serial-variant lightweight proxies could be nasty.

IBM Global Services

© Copyright IBM Corporation 2007

IBM Internet Security Systems
Ahead of the threat.™

© 2005 Internet Security Systems. All rights reserved. Contents are property of Internet Security Systems.

Questions?

Thanks, the end.

	Agenda
	What is code obfuscation?
	About this talk
	COM Proxy Technique
	VB2007 COM Proxy Specifics
	VB2007 COM Proxy Specifics
	Demonstration Placeholder
	COM Proxy Specifics Reminder
	Detecting COM Proxies to WinAPI
	Detecting COM Proxies to WinAPI
	COM Proxy to WinAPI Detection Challenges
	COM Proxy to WinAPI Detection Challenges
	COM Proxies:Is this madness or is this Sparta?

