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Agenda

What is code obfuscation?
About this talk.
COM Proxy to Windows API Technique.
Demos.
Detection opportunities and challenges.
Candidacy as a future threat.
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What is code obfuscation?

Any time the original code intent is made
difficult to ascertain.
Goals of obfuscation vary: delay analysis,
hope analysts miss something, bypass
detection technology, etc.
Scripts and compiled applications can utilize
similar and dissimilar code obfuscation
techniques.

– Dissimilar techniques highlight feasibility and
relevance issues.
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About this talk

Malware commonly uses code obfuscation whether it
is a binary executable or script.
Little discussion on combining the two
(binary+script) may surprise us later on.
Talk assumes some existing understanding of the
Component Object Model (COM).
Using COM, we can add named items to ActiveScript
libraries such as VBScript and JavaScript to proxy
calls to WinAPI from script code.
Will discuss detection opportunities and challenges.
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COM Proxy Technique

At its core, it is like DOM creation:

– CoCreateInstance() with IID_IActiveScript.
– QueryInterface() returned with

IID_IActiveScriptParse.
– SetScriptSite() with returned interface and

self-created IActiveScriptSite.
– InitNew() on IActiveScriptParse interface.
– AddNamedItem() to IActiveScript with your

object exposing methods and properties.
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VB2007 COM Proxy Specifics

Many ways to implement.
– This will be reiterated later on.

This sample proxy exposes the following
methods to the ActiveScript a la COM:

– LoadLibrary( BSTR libname, … )
– RegisterCallback( IDispatch* callbackfunc, … )
– BSTRtoLONG( BSTR inbstr, … )
– Alert( BSTR alerttext )

Proxy in this case has zero knowledge of
Windows libraries/APIs.
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VB2007 COM Proxy Specifics

How does it actually proxy between JS and Win32/64?
The IActiveScript engine will query OLE’s
GetIDsOfNames() for an ID to pass to the invoke()
method for IDispatch objects.
We can write our own IDispatch methods instead of
relying on the default provided.
We obtain the WinAPI call pointer during
GetIDsOfNames() for OLE to pass to invoke() as the
DispatchID (DISPID).
invoke() accepts an arbitrary number of parameters
from OLE as an array.
Thus, a custom object returned by our LoadLibrary()
will allow you to make calls to the Windows library as
if the APIs were exposed by the object.
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Demonstration Placeholder

Scenarios to watch out for:

– Stand-alone EXE
– DLL injected into other process
– DLL used as browser plug-in

May need to instantiate JS/VBS libraries but not
limited to one browser.
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COM Proxy Specifics Reminder

Not all proxies need to be implemented like the
sample discussed to work.

– GetIDsOfNames() doesn’t need to be the device used to obtain
an API address.

– invoke() doesn’t need to call the desired WinAPI.
Could do something esoteric like copying WinAPI
parameters into a BSTR for further obfuscation.
The type library information can be loaded either
from a file/moniker or executable resource through
OLE’s LoadTypeLib().

– DIY alternative with OLE’s CreateDispTypeInfo() and
CreateStdDispatch().
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Detecting COM Proxies to WinAPI

Look inside GetIDsOfNames() method:

– GetProcAddress() call
– FS:[] references (incl. FS:[0])
– References to static addresses outside of

code/data pages
Look inside invoke() method:

– Any x86 LOOP instructions or equivalent?
– x86 CALL to the DISPID sent to invoke()
– PUSHA/POPA blocks
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Detecting COM Proxies to WinAPI

Look inside exposed methods:

– Any calls to suspicious APIs using
parameters passed from method input.

Don’t count on this!
– Any x86 CALL to a BSTR input parameter.

A problem though with VARIANT type.
Suggestions do not cover all possibilities.

– Consider combining heuristics with
knowledge of DOM-like creation.
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COM Proxy to WinAPI Detection Challenges

Multiple ways to obtain the address of WinAPIs.
Easy to obfuscate storage of WinAPI addresses in
both proxy utility and script.
Different ways to write the translation routine to
place values on the stack for WinAPI calls.
Stack translation need not occur in same code
branch as WinAPI call.
Stack translation could occur entirely within script,
though it will require a helper method to write to
arbitrary offsets.
Proxy can have more “knowledge” than the VB2007
sample and hence reduce the arbitrary nature of the
proxy implementation.
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COM Proxy to WinAPI Detection Challenges

The script language could be any installed
ActiveScript library. The only changes needed to go
from JS to VBS support is the CLASSID for
CoCreateInstance()—and rewriting the script code for
that language.

The script (JS/VBS/etc) itself can be heavily
obfuscated and simultaneously
compressed/encrypted.

Think of today’s webfuscations if they could call Win32 APIs!

The script could be made to look innocuous by
careful proxy design.

The script component could exist remotely:
– WSOCK2 / WININET APIs
– XMLHTTP ActiveX
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COM Proxies:
Is this madness or is this Sparta?

– Madness:
Latency issues with API calls and callbacks.
Most proxies will be easy to detect with smart static
signatures or behavioral analysis when processing malicious
script.
Restricting availability of ActiveScript libraries thwarts attack.

– Sparta:
Few remaining frontiers?
Proxying may defeat some generic detection techniques.
Serial-variant lightweight proxies could be nasty.
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Questions?

Thanks, the end.
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