
BROWSER ATTACK POINTS STILL ABUSED BY BANKING TROJANS KÁLNAI & POSLUŠNÝ

1VIRUS BULLETIN CONFERENCE OCTOBER 2017

BROWSER ATTACK POINTS
STILL ABUSED BY BANKING

TROJANS
Peter Kálnai & Michal Poslušný

ESET, Czech Republic

 Email {peter.kalnai, michal.poslusny}@eset.cz

 ABSTRACT

With the ever-increasing use of banking-related services on the
web, browsers have naturally drawn the attention of malware
authors. They are interested in adjusting the behaviour of the
browsers for their purposes, namely intercepting the content of
web forms, modifying server responses manifested as
webinjects, and confi rming validity of spoofed SSL
certifi cates. These goals are usually achieved by placing
malicious code at certain addresses within a browser process.

It has been more than seven years now since the infamous
Zeus bot fi rst successfully took advantage of Mozilla Firefox
by hooking specifi c exported functions, and the same approach
has been widely used by others ever since. Moving to
Microsoft Edge, the browser’s developers have made their best
efforts to mitigate arbitrary code execution, using technologies
like Code Integrity Guard (CIG) and Arbitrary Code Guard
(ACG), but the focus is on stopping exploitation of the
browser itself, rather than preventing execution of injected
code delivered by a remote malicious process. Finally,
cybercrooks seem to have the greatest trouble adapting their
hooks in Google Chrome. Though it might not have been the
primary intent of the developers, the custom implementation
of its SSL functionality has resulted in a cat-and-mouse game
thanks to the fact that the attack points are unexported and
change regularly.

In our presentation we will guide the audience through an
overview of the techniques used by major banking trojans in
the wild. We are pleased to see that the ease of implementing
hijacking methods is diminishing, and that attackers are under
constant pressure to adopt changes. Moreover, security
solutions offer various browser protections that work very well
against existing methods. How do they handle that? Wouldn’t
it be great to see the mitigation in the fi rst possible layer? We
consider this as a topic for discussion. As a side result, we also
transform our collected knowledge into a plug-in for the
Volatility Framework that extends the functionality of
apihooks within the scope of browsers.

 INTRODUCTION

The history of man-in-the-browser (MITB) attacks goes back
at least as far as 2007, to the birth of the Zeus bot. The basic
principles of MITB, including both form grabbing and
webinjects, their hooking techniques and their role in the
cyber-underground economy, are widely known and
understood [1, 2]. Attack trends have evolved hand-in-hand
with the development of web browsers and network protocols.
Nowadays, a robust banking trojan cannot exist without code
injects of both 32-bit and 64-architectures, or without the
ability to put the HTTP/2 protocol [3] out of action. The dark
web is full of advertisements for malware promising fancy

features that would lead to a large botnet, but their authenticity
is questionable and their perceived reputation depends on the
advertiser. In Figure 1 we show an example of a relatively
recent, unverifi ed, offer from October 2016.

Figure 1: Advertisement for an advanced banking trojan.

The key principle in MITB is to hijack a browser’s features for
the benefi t of the attacker. This is realized predominantly
through malicious handlers installed to address specifi c
functions in the browser’s process space. The methods used to
install the hooks generally do not need to be modifi ed over
time; however, there is one group of exceptions which has
increasing dominance: Chromium-based projects. The
contribution of this paper is to summarize the technical details
of how malware developers reach their goals despite the
raising of the bar in terms of defensive measures. During our
research, we recognized well-written coding of a professional
standard, as well as a series of faux pas ranging from
redundant checks of conditions to illogical code fl ow.

M ITB ATTACKS
There are fi ve major web browsers in widespread use on
Windows systems: Mozilla Firefox, Internet Explorer, Microsoft
Edge, Google Chrome and Opera. For an attacker, the ease of
adapting the desired function hooks differs with each browser.
While the attack points in the Firefox and Microsoft browsers
are exported, and therefore easily hooked, the situation in
Chrome and Opera is different. Both of these programs are
based on the common codebase of the Chromium project, which
implements SSL functionality in a customized form.

There are multiple obstacles that malware authors have to
overcome before they can achieve their goals:

1. Locating a browser’s process memory

2. Injecting a payload

3. Locating the attack points

4. Installing hooks

Malware authors vary in the way they implement attacks,
displaying different levels of code quality and optimization,
however they are quite far from being cargo cult programmers.

Apart from hooking the attack points, malware developers are
also interested in turning off special protocol features like

BROWSER ATTACK POINTS STILL ABUSED BY BANKING TROJANS KÁLNAI & POSLUŠNÝ

2 VIRUS BULLETIN CONFERENCE OCTOBER 2017

HTTP/2, SPDY and QUIC as they are implemented in
browsers. The attackers really don’t enjoy these protocols
because request and response HTTP headers are compressed,
and therefore harder to parse. Instead of implementing
complicated routines to extract the content, they apparently
prefer to disable the use of these protocols in the way in
which each browser is confi gured.

S pecifi cs of MITB in Microsoft Edge

Microsoft Edge is implemented only as a 64-bit web browser.
Injection is possible, even though the browser runs under the
supposedly safe Runtime Broker process like the apps from
the Windows Store. In view of Microsoft’s newly introduced
dynamic code mitigation techniques, which include
disallowing allocation of new executable memory pages and
not allowing existing code pages to be made writable once a
process is initialized [4], we had the impression that injection
cannot be realized easily. However, the opposite is true: we
were able to inject a payload into the Edge browser just as we
could into any other process. Only medium integrity level
without special privileges was needed to accomplish that.
Figure 2 shows our custom command-line tool, which injects
its code into all instances of Edge, hooks the attack points and
exfi ltrates login data.

Sp ecifi cs of MITB in Chrome and Opera

Because these Chromium-based browsers do not export the
attack points, malware authors have been forced to come up

Figure 2: Hijacking network traffi c in Microsoft Edge.

with various methods of locating them manually. Most
malware families have their own unique approach, even
though they could copy from each other or from various
source code leaks. While MITB support for Chrome is a must
due to its market share, support for Opera is rare. The attack
points are usually obtained by locating Chrome’s SSL virtual
method table, defi ned as the SSL_PROTOCOL_METHOD
structure (which we denote subsequently as SSL VMT),
which contains functions that send and receive unencrypted
HTTP(S) data (ssl3_write_app_data and ssl3_read_
app_data, respectively; ssl3_free is additionally hooked;
cf. the upper left frame of Figure 6). Note that Chrome
switched to the BoringSSL implementation with Chrome 41
(March 2015), as the previous Mozilla Network Security
Service (NSS) was dropped. Opera switched to Chromium’s
codebase and updated its releases accordingly, starting with
version 15 in July 2013. Opera has incorporated BoringSSL
code since Opera 28, released in March 2015.

FA MILIES OF BANKING TROJANS
Now we provide a catalogue of hijacking techniques as
implemented by contemporary banking trojans active in the
last year. Despite our attempts to include as many families as
possible, the list is most likely incomplete. This is because we
may have overlooked projects that are not prevalent enough to
be easily spotted, projects that were in the testing phase when
banking modules could not be acquired because a control
server was not yet accessible, the resurgence of older variants,
or malware omitting its banking module in newer versions.

BROWSER ATTACK POINTS STILL ABUSED BY BANKING TROJANS KÁLNAI & POSLUŠNÝ

3VIRUS BULLETIN CONFERENCE OCTOBER 2017

When referring to malware families, we use ESET’s detection
convention with a prefi x ‘Win/’ if we mean both 32-bit and
64-bit variants. These names may easily be cross-referenced
on VirusTotal, nevertheless we mention the most commonly
known alternative in parentheses. If the names are identical,
we will omit the prefi x.

The families that we considered already to be eradicated due
to the author’s retirement or actions on the part of law
enforcement agencies include Win32/Tinba, Win32/Battdil
(a.k.a. Dyre) [5], Win32/Corebot [6] and Win32/Phase (a.k.a.
PhaseBot, previously developed as Win32/Napolar, a.k.a.
SolarBot). We did not see a banking module in the latest
versions of the Win32/Emotet malware, either [7]. Also, our
focus is not on families that prefer the man-in-the-middle
attacks, which are typical of many Win/Zbot (a.k.a. Zeus) [8].
However, we found a fork of Zeus known as Floki [9, 10]
trying to include MITB in October 2016. Looking at its
approach to MITB for Chrome, the bot had two hard-coded
byte sequences, which served for pattern searches in a
mapped chrome.dll. The match was successful for all Chrome
52 major versions. The patterns were not designed to hit the
corresponding attack points in SSL VMT but their wrappers
instead (see Figure 3).

Interestingly, there was a sample of Win32/PSW.Papras.CU
from 2013 (known as an early version of Vawtrak) that
demonstrated that its authors didn’t know at that time how to
handle hooking in the newly introduced Chrome browser, and
they disabled any network functionality in a Chrome process
instead. This was done by calling the WSACleanup() routine
in an endless loop. The victim was then forced to switch to
another browser, most likely Internet Explorer, which was
installed by default on every Windows system, and since it

was the most prevalent browser at the time, it’s natural to
expect that the authors already had hooks for IE ready (and
indeed they did).

Win /Dridex
The Dridex bot is one of the most adaptable and prevalent
in-the-wild banking trojans. The authors update the bot’s code
consistently and the botnets are still very active despite
several botnet takedowns and arrests relating to this group
[11, 12].

The way Dridex locates the attack points in Chrome is heavily
dependent on the browser version. Rather than relying on a
generic solution, Dridex seems to rely on a prompt response
from its authors, who usually take up to a few days at most to
update their banking module to cover a new release of
Chrome, cf. Table 1. The trojan looks up Chrome’s version in
the associated Uninstall registry key. This seems not to be an
optimal strategy as the portable versions do not provide this
information – we have observed more reliable methods
implemented by competing banking trojans, such as
extracting the version from chrome.dll’s module handle or
resources. Nevertheless, the version is then used to decide
which pattern will be used to fi nd the SSL VMT. In the past,
Dridex used patterns locating specifi c parts of code in the
.text section that contained a static pointer to SSL VMT. In
the left frame of Figure 4, we show a list of patterns that
helped identify a specifi c position in the .text section of
chrome.dll. The list has grown as each major release of
Chrome produces slightly different code. Moreover, there
were many changes of indices of the desired attack points in
the table, so the bot had to resolve them case by case, as
shown in the frame on the right.

Figure 3: Pattern search for Floki attack points.

BROWSER ATTACK POINTS STILL ABUSED BY BANKING TROJANS KÁLNAI & POSLUŠNÝ

4 VIRUS BULLETIN CONFERENCE OCTOBER 2017

In the most recent releases of Dridex, the authors have fi nally
dropped locating the static pointer, and instead they look for
the SSL VMT directly in the .rdata section using the \x03\
x04\x03 pattern. This is a substring of a concatenation of two
constants signalling the highest and the lowest versions of
SSL supported by the methods in SSL VMT.

As Table 1 shows, successful adaptation addressing changes
in SSL VMT for the latest Chrome version was usually
achieved in just a few days. The third column shows the
lowest version number of the bot collected by ESET LiveGrid
that successfully implemented the attacks for the latest stable
Chrome release. In other words, we have not caught any bot
with an earlier build number that managed to attack the
corresponding release successfully. The timestamp in the PE
header can easily be altered; however, in these cases the
values in the fourth column seem to be the original values,
since they correspond well with the release dates of Chrome
versions.

Chrome stable
version

Release date

(DD/MM/YY)

Dridex
version

Timestamp

(DD/MM/YY)

40.0.2214.115 19/02/15 2.093 11/03/15

42.0.2311.90 14/04/15 2.108 17/04/15

43.0.2357.65 19/05/15 3.011 26/05/15

44.0.2403.89 21/07/15 3.073 06/08/15

45.0.2454.85 01/09/15 3.102 25/09/15

47.0.2526.73 01/12/15 3.154 07/12/15

48.0.2564.97 27/01/16 3.167 29/01/16

49.0.2623.87 08/03/16 3.188 10/03/16

51.0.2704.106 23/06/16 3.225 24/06/16

53.0.2785.116 14/09/16 3.258 26/09/16

54.0.2840.71 20/10/16 3.269 17/11/16

58.0.3029.81 19/04/17 4.048 16/05/17

Table 1: Reaction times of Dridex.

 Win/Spy.Ursnif

Unlike Dridex, which seems to have been developed by a
single development team with the same binaries shared across

all campaigns/botnets, Win/Spy.Ursnif has several unrelated
forks of a common code base that evolved over time and are,
these days, quite different from each other in many aspects.
The source code of the project, originally called ISFB and
referring to version 2.13.24.1 build 459, was leaked in late
2015 and is still available on GitHub. Since then, many forks
of the project have come into being, for example Dreambot,
IAP, Powersnif, GozNym, etc. [13].

 ISFB – the main branch
The Chrome version is determined by looking up the version
info directly in the chrome.exe binary, which is probably the
most reliable way.

This fork also has a very interesting SSL VMT lookup –
probably the most advanced we have seen. It walks through
the relocations present in the .rdata section and hooks every
virtual method it can fi nd with a common handler. Every time
the handler is called, it looks for ‘GET’, ‘POST’, ‘PUT’ or
‘OPTI’ strings in the third argument on the stack (cf. Figure
5). If any of these four strings is found, it will assume it has
found the ssl3_write_app_data function in SSL VMT,
and it counts the position of the other two attack points and
hooks them with new, specifi c SSL handlers. The relative
offset of the table, together with the checksum of chrome.dll,
are automatically saved into the registry, so it doesn’t have to
do this ‘nasty’ thing again. The next time it is injected into
Chrome, it can hook the SSL VMT directly. A custom
exception handler is also installed in order to avoid
ACCESS_VIOLATION crashes when dereferencing an
argument that is not a pointer. This increases stability during
these unstable actions.

MITB attacks against Opera do not seem to be maintained by
the IFSB authors. Locating and hooking the attack points
would be successful with their robust approach, and we tested
this against some older releases. However, the lookup is not
even triggered in most Opera versions due to a design change
that transferred SSL VMT to a different module. The authors
could very easily correct this if they wished to.

W in/Spy.Ursnif.AX
The fi rst report of this threat appeared in June 2017 [14]. This
fork does not follow the original versioning; in fact it
possesses no version info at all. The PE timestamp of the
earliest acquired sample reads 12/12/16. The threat mostly

Figure 4: Pattern search and version checks of Chrome by Dridex.

BROWSER ATTACK POINTS STILL ABUSED BY BANKING TROJANS KÁLNAI & POSLUŠNÝ

5VIRUS BULLETIN CONFERENCE OCTOBER 2017

targets countries like Mexico, Colombia and Chile. The
family can be identifi ed by the PDB strings:

• C:\Users\W7\Downloads\
Modifi cationSourceCode_16_12_6\Bin\Loader.pdb

• C:\Users\W7\Downloads\Project\Bin\Loader.pdb

The developers clearly didn’t participate in any festivities on
Saint Nicholas’ Day that year, perhaps unlike many of the
victims from the predominantly Roman Catholic countries
receiving their code. The bot does not bother obtaining the
Chrome version, but searches for a series of version-specifi c
patterns instead, hoping that one will succeed. The pattern
searches are likely to fl ag incorrect addresses as the attack
points. This is exactly what happened with Chrome 59, which
would be hooked correctly using the pattern search for Chrome
58, but due to the bot’s illogical traversal from the oldest to the
newest releases, it wrongly matched to the place that worked
for the old Chrome 53 so the hooks were installed on a
completely different virtual method table. Moreover, there is
also a failure in preserving the attack support from Chrome 57
64-bit to Chrome 58 64-bit because after a successful discovery
of SSL VMT, there are unnecessary additional conditions on
the fi rst byte in the bodies of functions that remained the same
in 32-bit releases, but not in these 64-bit releases. Overlooking
all these details seems like either carelessness or erroneous
thinking on the part of the malware developers.

An unreferenced character string ‘OPERA.exe’ suggests the
possible withdrawal of the MITB feature for this browser.

Figure 5: Almost every Chrome virtual method is initially hooked by IFSB.

G ozNym
Win/Nymaim fi rst incorporated the ISFB functionality
directly into a downloadable banking module that was
enormously obfuscated soon after using the same techniques
as the main Win/Nymaim project cf. [15, 16].

W in/TrickBot
There are clues indicating that this project is a direct successor
of Dyre, the banking trojan that was active between March
2014 and November 2015. Moreover, there is an unreferenced
specifi c string, ‘K8DFaGYUs83KF05T’, which originated in
the Carberp source code. The fi rst version that was uploaded
to VirusTotal was numbered 1001 with the timestamp
2016-06-22. A detailed analysis is available in [17].

TrickBot queries the Software\Google\Chrome\BLBeacon
registry key to obtain the Chrome version and searches for the
\x03\x04\x03 pattern to locate SSL VMT. Being a relatively
recent project, it does not support legacy versions prior to
Chrome 54.

W in/Qadars
This threat is under constant development, evolving from the
early v1.0.2.3 in December 2013 [18] up to the current
v3.0.0.1, with major version 3 fi rst reported in September
2016 [19]. The main module is heavily obfuscated, as are the
plug-ins, and data is mostly stored in a variety of structure
types, which slows down the analysis.

BROWSER ATTACK POINTS STILL ABUSED BY BANKING TROJANS KÁLNAI & POSLUŠNÝ

6 VIRUS BULLETIN CONFERENCE OCTOBER 2017

As is the case with Win/Spy.Ursnif, Qadars parses relocations
to obtain candidates for SSL VMT located in the .rdata
section. Every selected virtual method table is then compared
against a list of masks, which are basically structures of
four-byte bitfi elds. There are 10 masks of that form in total,
two of which are displayed in Figure 6. The upper byte
generally orders a condition evaluation, such as whether the
element in the table is equal to 0x304, or whether the element
is a function from the .text section, or if it also points to 0,
and so on. If the table is SSL VMT, then the position of
entries with the upper byte equal to 0x82 identifi es the indices
of the three attack points and the lower byte then indicates its
internal position. Qadars tries every mask in the array from
newest to oldest until it succeeds.

Wi n/Qbot

Qbot has been known for as long as Zeus, but it is still active.
A detailed description is provided in [20, 21]. The bot doesn’t
care into which browser it is currently injected; it simply tries
to hook all the potential points of attack that it can fi nd in its
process space (Figure 7).

Hooking is done in two stages: fi rst, Qbot fi nds the functions it
wants to hook, stores all the necessary information and creates
a trampoline to the original function [22]. In the second stage,
all the previously stored functions are hooked at once.

When looking for Chrome’s attack points, Qbot doesn’t try to
hook SSL VMT directly, but searches for higher level
wrappers in the code section. They are found using very
specifi c patterns that are crafted for every version of Chrome,
as these functions change frequently and the patterns usually
do not last longer than one major release. Qbot loops through
all stored patterns from newest to oldest until the valid attack
points are found.

While Qbot doesn’t really puzzle over what process it’s
residing in, it’s very careful and precise when it comes to
hooking itself. Qbot uses the ‘MinHook’ open source hooking
library that can be found online. The same hooking library
was also used in the leaked TinyNuke source code. However,
the structure of patterns is completely different. The structure
starts with the word representing the length of the pattern that
follows afterwards. The byte 0xAA serves as a wildcard
(Figure 8).

Figure 6: Structure of masks present in Qadars.

Figure 7: Hooks are prepared by Win/Qbot for every browser, regardless of the process name.

BROWSER ATTACK POINTS STILL ABUSED BY BANKING TROJANS KÁLNAI & POSLUŠNÝ

7VIRUS BULLETIN CONFERENCE OCTOBER 2017

Win/ Tinukebot

There is a really interesting story behind this project [23]. It
seems to have been developed by an adolescent French guy
who released his code on GitHub under his real name,
together with a contact email on a domain established by his
father. First, he excitedly shared his project with
acquaintances who, unsurprisingly, tried to profi t from his
concept. He considered this attitude unfair, so he intentionally
made the sources available for free, to the disadvantage of
other cybercrooks trying to sell his creation on the dark web
[24]. Meanwhile, the project was sold on cybercrime forums
under various nicknames, all of which were banned for
violating the specifi c rules of the cybercrime market.

There is insuffi cient evidence that this malware family has
spread widely yet. However, there are signs of its initial
distribution in the wild, and with many new forks (around 170
at the time of writing) in a mirrored repository on GitHub, its
potential to become prevalent is clear.

The structure related to hooking the attack points was copied
from an offi cial project supported by Google (called
‘Webtestpage’ hosted under the profi le ‘WPO Foundation’),
which was available on GitHub. The structure of patterns
seems original, because other families use a different design
(Figure 9).

There is also a shift in the method of SSL VMT hooking. The
attack points are not replaced in the table itself, but the hooks
are installed in the prologues of the desired functions instead.
This has a similar impact on detection by the Volatility
Framework as in the case of Win/Qbot, because the original
apihooks plug-in [25] scans modifi cations only for exported
functions – we were therefore forced to extend its scope.

SUMMA RY OF TARGETS
Table 2 shows the families considered here and their support
for MITB attacks against various types of web browser. The

second column indicates the latest build of the related bot
specifi ed among the families in the fi rst column, as of 6 June
2017. The other columns show the targeted browsers. Note
that it’s only necessary to specify the browser version for
Chrome and Opera. The support of attacks on their releases is
enumerated for the latest version of the bot only. However,
the code clean-up is also standard practice in these malware
projects, so the support for various releases was present in
previous bot versions. For instance, Dridex has supported
attacks on Chrome since version 40 and perhaps even in
earlier versions.

 DETECTION WITH VOLATILITY
FRAMEWORK
The apihooks plug-in works for exported functions only.
Therefore, in the case of Microsoft browsers and Firefox, we
can use its functionality and just restrict it to browser
processes. The harder part is to identify hooks on unexported
functions, as is the case with Chrome MITB attacks. As we
have shown, there are multiple approaches as to where to put
an attacker’s handler. Changes of SSL VMT entries are easy
to spot as soon as the malware’s SSL VMT replacements are
completed. The easiest approach to spotting the malicious
hook on unexported functions outside of SSL VMT is a
pattern search inspired by sequences of bytes found in the
analysed families.

The implementation of the plug-in can be found on ESET’s
GitHub repository [26]. Besides the recognition of hooks in
exported functions, the plug-in also supports detecting
replacements and hooks in SSL VMT or hooks applied in the
wrappers calling functions from SSL VMT. Both architectures
have been considered.

 MITIGATION AND PREVENTION
The security issues caused by MITB attacks have existed for
quite some time. There are several points at which the

Figure 8: Structure of patterns present in Qbot.

Figure 9: Structure of patterns present in Win/Tinukebot.

BROWSER ATTACK POINTS STILL ABUSED BY BANKING TROJANS KÁLNAI & POSLUŠNÝ

8 VIRUS BULLETIN CONFERENCE OCTOBER 2017

mitigation of these attacks is possible and several of them
have been examined in the past by authors active either in
academia or in the anti-virus industry. Most of these
approaches focus on webinjects. Buescher et al. reported in
their 2011 paper [27] a technology called Banksafe that
detects the attempts of illegitimate software to manipulate the
browser’s network activity. Continella et al. recently designed
a system called Prometheus [28], which is able to identify
malicious injections, to generate behavioural signatures, and
fi nally to extract target URLs by using the Volatility
Framework and YARA rules. In [29], an application layer
called HoneyWeb was proposed by Wang to protect
institutions from web injection attacks (where web injection
scripts are injected into invisible decoy elements).

Let us now discuss possible ways of hardening against a
MITB attack before a successful injection occurs. Despite
the fact that the scope for attack mitigation on an already
compromised system is limited, we think that there still exist
options for putting the attackers under signifi cant pressure.
Moreover, constantly updating the web browser can often
disrupt a previously successful MITB. The focus should be
on achieving simplicity in implementing a defensive
methodology that makes implementing an attack as
complicated as possible for the attacker. However, we
consider the following suggestions from the point of view of
the browser user’s security, inspired by real examples mostly
attacking Chrome, and not from the security developer’s
point of view, which might be quite different, or even
diametrically opposed.

On the other hand, analyses of banking trojans show that
methods that seem useful at the time might easily be bypassed
by the next update of the bot. These include randomizing the
names of browser processes (fi refox.exe, chrome.exe,
microsoftedgecp.exe, iexplore.exe, opera.exe), which may
lead to a more complicated lookup for the right processes, but
Figure 7 demonstrates a case where the bot actually did not
rely on it at all.

1. Locating process memory of a browser:

 Restriction of opening handles to a browser’s process
without special privileges e.g. using the

Banking trojan
Latest version Web browser

IE Edge

(x64)
Firefox

Chrome
Opera

32-bit 64-bit

Win/Dridex 4.057 (26/05/17) Yes No Yes 48-59 48-59 No

Win/TrickBot 1025 (22/05/17) Yes Yes Yes 54-59 54-59 No

Win/Spy.Ursnif

(Gozi/ISFB)

2.16 build 943

(09/05/17)
Yes Yes Yes 44-59 44-59 28;29

Win/Spy.Ursnif.AX
- (26/05/17) Yes Yes Yes

49-52; 53;
54-58

49-52; 53;
54-57

No

Win/Qbot 0310.734 (24/05/17) Yes Yes Yes 48-58 54-58 No

Win/Qadars 3.0.0.1 (04/04/17) Yes No Yes 49-57 49-57 No

Win/Tinukebot - (06/06/17) Yes No Yes
52; 53;
54-59

52; 53;
54-59

No

Table 2: Summary of banking trojans’ targets.

ObRegisterCallbacks routine to restrict requested
access rights during an open process action.

2. Injecting payload:

 Remote code-injection limited to signed code only:
e.g. Microsoft Edge does not allow the calling of
LoadLibrary on an unsigned binary. Also, various
restrictions of behaviour within browser processes
executed from kernel space.

3. Locating the attack points:

 Attack points should defi nitely not be exported. Of
course this does not apply to the system’s browsers,
because, for various reasons, WINAPI functions have
to have the ability to be hooked. Furthermore,
randomizing the section names, together with
randomizing the order of sections of a module
containing attack points, may be an another obstacle to
the attackers who try to fi nd SSL VMT by parsing the
PE structure and the relocation table of the loaded
chrome.dll module. This suggests an additional
randomization of locations of attack points and the
order of their arguments. Real life examples show that
exactly this unpredictability causes the greatest trouble
to the attacker. Switching the order of arguments would
force the attackers to check the validity of memory
pointers to buffers with unencrypted HTTP content.

4. Installing hooks:

 Restrictions of behaviour within browser processes
executed from kernel space.

Note that even the complete eradication of potential MITB
attacks would not save web browsers from being abused.
There is just as much potential for abuse by implementing a
man-in-the-middle attack instead. Another important
development of browser security in the context of MITB
comes with advanced network protocols like HTTP/2.

 CONCLUSION
The desire to incorporate these particular attacks into a
malware project exposes its authors to the necessity of

BROWSER ATTACK POINTS STILL ABUSED BY BANKING TROJANS KÁLNAI & POSLUŠNÝ

9VIRUS BULLETIN CONFERENCE OCTOBER 2017

reversing the attack points, and of more advanced
programming. Comparing the various projects, it seems that
the authors generally do not copy from each other, neither
do they rely on the legion of source code leaks. Unlike many
ransomware projects, in this case the goal is handled by
their own means. There is a certain potential to prevent
MITB prior to any successful injections, taking the most
powerful defensive action of making crucial attack points
unexported and changing their position relative to each other
with each major release. Needless to say, another reasonable
approach is to use third-party protections that secure
browser processes by encrypting keystrokes, or by providing
an isolated environment that prevents code injection from
remote processes.

 REFERENCES

[1] Boutin, J.-I. Evolution of WebInjects. Virus Bulletin
2014, Seattle. https://www.virusbulletin.com/
uploads/pdf/conference/vb2014/VB2014-Boutin.pdf.

[2] Siebert, T. Advanced Techniques in Modern
Banking Trojans. Botconf 2013, Nantes.
https://www.botconf.eu/wp-content/uploads/2013/
12/02-BankingTrojans-ThomasSiebert.pdf.

[3] Thomson, M. (ed.); Belshe, M.; Peon, R. Hypertext
Transfer Protocol Version 2 (HTTP/2). May 2015.
https://tools.ietf.org/html/rfc7540.

[4] Miller, M. Mitigating arbitrary native code execution
in Microsoft Edge. February 2017.
https://blogs.windows.com/msedgedev/2017/02/23/
mitigating-arbitrary-native-code-execution.

[5] Marcos, M.J.S.; Inocencio,R.U. We have a ‘DYRE’
(dire) situation. AVAR 2015, Da Nang, 113-139.

[6] Pagnotta, S. CoreBot adquiere funcionalidades de
troyano bancario. September 2015.
https://www.welivesecurity.com/la-es/2015/09/14/
corebot-troyano-bancario.

[7] Srokosz, P. Analysis of Emotet v4, Cert.pl. May
2016. https://www.cert.pl/en/news/single/analysis-of-
emotet-v4.

[8] Kotowicz, M. ZeuS Meets VM – Story so Far.
Botconf 2015, Nancy. https://www.botconf.eu/
wp-content/uploads/2014/12/2014-3.6-ZeuS-Meets-
VM-%E2%80%93-Story-so-Far.pdf.

[9] hasharasade. Floki bot and the stealthy dropper.
November 2016. https://blog.malwarebytes.com/
threat-analysis/2016/11/fl oki-bot-and-the-stealthy-
dropper.

[10] hasharasade. Zbot with legitimate applications on
board. January 2017. https://blog.malwarebytes.com/
cybercrime/2017/01/zbot-with-legitimate-
applications-on-board.

[11] Baz, M.; Gal, M. Dridex Gone Phishing. Botconf
2016, Lyon. https://www.botconf.eu/2016/dridex-
gone-phishing/.

[12] MalwareTechBlog Let’s Unpack: Dridex Loader.
February 2017. https://www.malwaretech.com/
2017/02/lets-unpack-dridex-loader.html.

[13] Kotowicz, M. ISFB: Stile Alive and Kicking. Botconf
2016, Lyon. https://journal.cecyf.fr/ojs/index.php/
cybin/article/view/15.

[14] Schwarz, D. Another Banker Enters the Matrix. June
2017. https://www.arbornetworks.com/blog/asert/
another-banker-enters-matrix/.

[15] Kotowicz, M; Jedynak, J. Nymaim: the Untold Story.
Virus Bulletin 2016, Denver.
https://www.virusbulletin.com/conference/vb2016/
abstracts/last-minute-paper-nymaim-untold-story.

[16] Ortega, A. Nymaim Origins, Revival and Reversing
Tales. Botconf 2016 Lyon. http://www.botconf.eu/
wp-content/uploads/2016/11/PR18-Nymaim-
ORTEGA.pdf.

[17] Zhang, X. Deep Analysis of the Online Banking
Botnet TrickBot. December 2016.
https://blog.fortinet.com/2016/12/06/deep-analysis-
of-the-online-banking-botnet-trickbot.

[18] Boutin, J.-I. Qadars – a banking Trojan with the
Netherlands in its sights. December 2013.
https://www.welivesecurity.com/2013/12/18/
qadars-a-banking-trojan-with-the-netherlands-in-its-
sights/.

[19] Kessem, L.; Natan, H.; Laskov, D. Meanwhile in
Britain, Qadars v3 Hardens Evasion, Targets 18 UK
Banks. September 2016. https://securityintelligence.
com/meanwhile-britain-qadars-v3-hardens-evasion-
targets-18-uk-banks/.

[20] Karve S.; Venere G.; Olea M. Diving into
Pinkslipbot’s Latest Campaign. Virus Bulletin 2016,
Denver. https://www.virusbulletin.com/conference/
vb2016/abstracts/diving-pinkslipbots-latest-
campaign.

[21] Oppenheim, M.; Zuk, K.; Meir, M.; Kessem, L.
QakBot Banking Trojan Causes Massive Active
Directory Lockouts. May 2017, IBM X-Force.
https://securityintelligence.com/qakbot-banking-
trojan-causes-massive-active-directory-lockouts/.

[22] Bremer, J. x86 API Hooking Demystifi ed. July 2012.
https://jbremer.org/x86-api-hooking-demystifi ed/.

[23] Kessem, L. The NukeBot Trojan, a Bruised Ego and
a Surprising Source Code Leak. March 2017.
https://securityintelligence.com/the-nukebot-trojan-a-
bruised-ego-and-a-surprising-source-code-leak/.

[24] Krebs, B. Self-Proclaimed ‘Nuclear Bot’ Author
Weighs US Job Offer. April 2017.
https://krebsonsecurity.com/tag/augustin-inzirillo/.

[25] Volatility Framework Command Reference Mal.
https://github.com/volatilityfoundation/volatility/
wiki/Command-Reference-Mal.

[26] browserhooks – plug-in for Volatility Framework.
https://github.com/eset/volatility-browserhooks.

[27] Buescher, A.; Leder, F.; Siebert, T. Banksafe
information stealer detection inside the web browser,
in: Proceedings of the International Workshop on
Recent Advances in Intrusion Detection (RAID),
2011, pp.262-280.

BROWSER ATTACK POINTS STILL ABUSED BY BANKING TROJANS KÁLNAI & POSLUŠNÝ

10 VIRUS BULLETIN CONFERENCE OCTOBER 2017

[28] Continella, A.; Carminati, M.; Polino, M.; Lanzi, A.;
Zanero, S.; Maggi F. Prometheus: Analyzing
WebInject-based information stealers, Journal of
Computer Security, Feb 2017, pp.117-137.

[29] Wang, X. Protecting Financial Institutions from
Man-in-the-Browser Attacks. Virus Bulletin 2014,
Seattle. https://www.virusbulletin.com/uploads/pdf/
conference/vb2014/VB2014-WangZhao.pdf.

 APPENDIX: SAMPLES

Banking trojan SHA-256

Win/TrickBot
archive

2cfb17d14897979a0b117d7c6ae3ec
2b762f8ba2694887c4878d6f63692d0
dca

Win/Spy.Ursnif
archive

f30b5ae67a5fc51e7ccdfbcca344aec
9cb1ca7216280243fa2652a2e6c41b0
7b

Win/Nymaim
payload

e1e35f3e37257ea2788b2906811f6e9
efbae4a9838c5a7c251d40842f4aa22
6e

Win/Spy.Ursnif.AX
archive

de894706930dbe88bceb5c68f09956e
2ab582cd2242c5e1d8e856b5407023
ece

Win/Spy.Ursnif
(ISFB)
source code

222c41a187cd3f7a48a6bdf68763f6d
b3a5ad3cd3ded718efa60aba7df3807
fe

Win/Qbot archive e549e403abafaeaa1fab0a7ac45fe8ed
7e23aa8368813e56b0c06702e62904
fd

Win/Dridex archive 62cdda34da902b20e6175dc7db1f5a1
642e225a716f1307d89c501c0dcd55
c5e

Win/Qadars archive 92694452df7d9c3c1cae798b1af5b49
95134d38d11ffa1ca4f68303b0d107a
12

Win/Tinukebot
(TinyNuke)
source code

b76a0b3640f0577100909af2ad6e8b2
3456b866b22f8613782b91388abee2
e34

Win/Spy.Zbot
(Floki) archive

03fd627951ef4009f98956c424244b1
30f139d3ef3ae01fe6ec414a6c1abb18b

